Magnetic refrigeration: recent developments and alternative configurations

Magnetic refrigeration, based on magnetocaloric effect, is an upcoming environmentaly friendly technology with a high potential to improve energy efficiency and to reduce greenhouse gas emission. It is a multidisciplinary research theme and its real emergence requires, to overcome scientific and technical issues related to both material and system. This paper presents the state of the art in magnetic cooling, the main recent works achieved and discusses in more details the thermodynamic phenomenon according to the G2Elab experience in the field.

[1]  Xiangzhao Meng,et al.  Review on research of room temperature magnetic refrigeration , 2003 .

[2]  Kaspar Kirstein Nielsen,et al.  Materials Challenges for High Performance Magnetocaloric Refrigeration Devices , 2012 .

[3]  Julien Roudaut,et al.  Modélisation et conception de systèmes de réfrigération magnétique autour de la température ambiante , 2011 .

[4]  K. Gschneidner,et al.  Description and Performance of a Near-Room Temperature Magnetic Refrigerator , 1998 .

[5]  J. A. Barclay,et al.  The theory of an active magnetic regenerative refrigerator , 1983 .

[6]  Afef Kedous-Lebouc,et al.  An experimental comparison of four magnetocaloric regenerators using three different materials , 2014 .

[7]  O. Sari,et al.  From conventional to magnetic refrigerator technology. , 2014 .

[8]  K. K. Nielsen,et al.  Review on numerical modeling of active magnetic regenerators for room temperature applications , 2011 .

[9]  Kevin J. Malloy,et al.  Electrocaloric devices based on thin-film heat switches , 2009 .

[10]  Ulrich Legait Caractérisation et modélisation magnétothermique appliquée à la réfrigération magnétique , 2011 .

[11]  K. G. Sandeman Magnetocaloric materials: The search for new systems , 2012, 1201.3113.

[12]  K. Gschneidner,et al.  Recent developments in magnetocaloric materials , 2003 .

[13]  P. Egolf,et al.  A review of magnetic refrigerator and heat pump prototypes built before the year 2010 , 2010 .

[14]  Kaspar Kirstein Nielsen,et al.  Development and experimental results from a 1 kW prototype AMR , 2012 .

[15]  A. Bejan,et al.  Heat transfer handbook , 2003 .

[16]  M.-E. Rosca Matériaux de type LaFe13-xSix à fort pouvoir magnétocalorique - Synthèse et optimisation de composés massifs et hypertrempés - Caractérisations fondamentales , 2010 .

[17]  Karl A. Gschneidner,et al.  Magnetocaloric effect and magnetic refrigeration , 1999 .

[18]  E. Brück,et al.  Magnetic and structural results on (Mn,Co)3(Si,P) and (Fe,Co)3(Si,P) alloys , 2014 .

[19]  Shi-Chune Yao,et al.  A chip scale electrocaloric effect based cooling device , 2013 .

[20]  M. Cooper,et al.  Thermal contact conductance , 1969 .

[21]  C. Muller,et al.  Improvement and application of a numerical model for optimizing the design of magnetic refrigerators , 2013 .