Magnetoencephalography and magnetic source imaging in children.

Magnetoencephalography is a technique that detects the magnetic fields associated with the intracellular current flow within neurons, unlike electroencephalography, which measures extracellular volume currents. Superconducting quantum interference devices are used to amplify these very small magnetic field signals. Magnetic source imaging is the combination of functional data derived from magnetoencephalographic recordings coregistered with structural magnetic resonance imaging (MRI). The utility of magnetic source imaging lies in the combination of the submillisecond temporal resolution of magnetoencephalography with the precise anatomic images provided by magnetic resonance imaging. As such, magnetic source imaging is a useful tool for noninvasive localization of the epileptogenic zone in children who are candidates for epilepsy surgery. Similarly, using magnetoencephalographic recordings with evoked and event-related potentials, magnetic source imaging holds great promise as a noninvasive method for precise localization of somatosensory, motor, language, visual, and auditory cortex. Finally, magnetic source imaging is proving a valuable research tool in the investigation of epilepsy, head trauma, brain plasticity, and disorders of language, memory, cognition, and executive function in children.