Unambiguous Automata Inference by Means of State-Merging Methods

We consider inference of automata from given data. A classical problem is to find the smallest compatible automaton, i.e. the smallest automaton accepting all examples and rejecting all counter-examples. We study unambiguous automata (UFA) inference, an intermediate framework between the hard nondeterministic automata (NFA) inference and the well known deterministic automata (DFA) inference. The search space for UFA inference is described and original theoretical results on both the DFA and the UFA inference search space are given. An algorithm for UFA inference is proposed and experimental results on a benchmark with both deterministic and nondeterministic targets are provided showing that UFA inference outperforms DFA inference.

[1]  E. Mark Gold,et al.  Complexity of Automaton Identification from Given Data , 1978, Inf. Control..

[2]  Daniel Fredouille,et al.  What is the Search Space for the Inference of Non Deterministic, Unambiguous and Deterministic Automata ? , 2003 .

[3]  Pierre Dupont Utilisation et apprentissage de modeles de langage pour la reconnaissance de la parole continue , 1996 .

[4]  Leonard Pitt,et al.  The minimum consistent DFA problem cannot be approximated within any polynomial , 1989, [1989] Proceedings. Structure in Complexity Theory Fourth Annual Conference.

[5]  Aurélien Lemay,et al.  Learning Regular Languages Using Non Deterministic Finite Automata , 2000, ICGI.

[6]  Rafael C. Carrasco,et al.  Grammatical Inference and Applications , 1994, Lecture Notes in Computer Science.

[7]  A.,et al.  INCREMENTAL GRAMMATICAL INFERENCE FROM POSITIVE ANDNEGATIVE DATA USING UNBIASED FINITE STATE AUTOMATA , 1994 .

[8]  J. Oncina,et al.  INFERRING REGULAR LANGUAGES IN POLYNOMIAL UPDATED TIME , 1992 .

[9]  Daniel Fredouille,et al.  Efficient Ambiguity Detection in C-NFA, a Step Towards the Inference on Non Deterministic Automata , 2000, ICGI.

[10]  Thomas G. Dietterich Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms , 1998, Neural Computation.

[11]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[12]  Leonard Pitt,et al.  The minimum consistent DFA problem cannot be approximated within and polynomial , 1989, STOC '89.

[13]  Barak A. Pearlmutter,et al.  Results of the Abbadingo One DFA Learning Competition and a New Evidence-Driven State Merging Algorithm , 1998, ICGI.

[14]  Kevin J. Lang Random DFA's can be approximately learned from sparse uniform examples , 1992, COLT '92.

[15]  Aurélien Lemay,et al.  Learning regular languages using RFSAs , 2004, Theor. Comput. Sci..

[16]  G DietterichThomas Approximate statistical tests for comparing supervised classification learning algorithms , 1998 .

[17]  Enrique Vidal,et al.  What Is the Search Space of the Regular Inference? , 1994, ICGI.

[18]  Colin de la Higuera Characteristic Sets for Polynomial Grammatical Inference , 1997 .

[19]  Aurélien Lemay,et al.  Learning Regular Languages Using RFSA , 2001, ALT.