Analysis of power-performance for Ultra-Thin-Body GeOI logic circuits

This work analyzes the power-performance of the emerging Ultra-Thin-Body (UTB) GeOI devices for logic circuit applications. The impacts of temperature and Vdd scaling on the leakage/delay are studied. Compared with the subthreshold leakage dominated SOI devices/circuits, the band-to-band tunneling dominated leakage currents of GeOI devices/circuits show less sensitivity to temperature. At 300°K and comparable delay, GeOI inverter with smaller band-gap shows larger leakage than the SOI inverter at Vdd = 1.0V, while exhibits lower leakage than the SOI inverter at Vdd = 0.8V. At 400°K, GeOI inverter shows both lower leakage and lower delay at Vdd = 0.6∼1.0V compared with the SOI counterpart, due to the weaker temperature dependence of band-to-band tunneling leakage compared with subthreshold leakage. Compared with the SOI Two-Way NAND and NOR, the GeOI Two-Way NAND and NOR show smaller leakage currents at Vdd = 0.5V or 400°K as the band-to-band tunneling leakage is less sensitive to temperature compared with the subthreshold leakage. Compared with the GeOI domino gate at 400°K, the SOI domino gate shows 5 times degradation in the worst-case noise (dynamic node voltage droop) and 1.4 times increase in the worst-case delay. The GeOI latch leakages are smaller than the SOI counterparts at 300°K (Vdd < 0.8V) and 400°K (Vdd = 0.5∼1.0V).

[1]  F. J. Morin,et al.  Lattice-Scattering Mobility in Germanium , 1954 .

[2]  R. L. Watters,et al.  Drift and Conductivity Mobility in Silicon , 1956 .

[3]  C. M. Lee,et al.  High-speed compact circuits with CMOS , 1982 .

[4]  A. Schenk Rigorous theory and simplified model of the band-to-band tunneling in silicon , 1993 .

[5]  A. Alvandpour,et al.  A conditional keeper technique for sub-0.13/spl mu/ wide dynamic gates , 2001, 2001 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.01CH37185).

[6]  L. Sigal,et al.  15.5 A 1.1GHz First 64b Generation Z900 Microprocessor , 2001 .

[7]  J. Tschanz,et al.  A leakage-tolerant dynamic register file using leakage bypass with stack forcing (LBSF) and source follower NMOS (SFN) techniques , 2002, 2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302).

[8]  Mark C. Johnson,et al.  Leakage control with efficient use of transistor stacks in single threshold CMOS , 2002, IEEE Trans. Very Large Scale Integr. Syst..

[9]  Saibal Mukhopadhyay,et al.  Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits , 2003, Proc. IEEE.

[10]  S. Narendra,et al.  Full-chip subthreshold leakage power prediction and reduction techniques for sub-0.18-/spl mu/m CMOS , 2004, IEEE Journal of Solid-State Circuits.

[11]  Balaram Sinharoy,et al.  Design and implementation of the POWER5 microprocessor , 2004, Proceedings. 41st Design Automation Conference, 2004..

[12]  Mike Lee,et al.  Design and Implementation of the POWER5 TM Microprocessor , 2004 .

[13]  Ru Huang,et al.  Comparison of device performance and scaling capability of thin-body GOI and SOI MOSFETs , 2005 .

[14]  K. Opsomer,et al.  High performance Ge pMOS devices using a Si-compatible process flow , 2006, 2006 International Electron Devices Meeting.

[15]  K. Suzuki,et al.  High Performance 60 nm Gate Length Germanium p-MOSFETs with Ni Germanide Metal Source/Drain , 2007, 2007 IEEE International Electron Devices Meeting.

[16]  N. Tzartzanis,et al.  A Leakage Current Replica Keeper for Dynamic Circuits , 2006, IEEE Journal of Solid-State Circuits.

[17]  S. Laux A Simulation Study of the Switching Times of 22- and 17-nm Gate-Length SOI nFETs on High Mobility Substrates and Si , 2007, IEEE Transactions on Electron Devices.

[18]  G. Ghibaudo,et al.  Localized ultra-thin GeOI: An innovative approach to germanium channel MOSFETs on bulk Si substrates , 2008, 2008 IEEE International Electron Devices Meeting.

[19]  G. Ghibaudo,et al.  Impact of scaling on electrostatics of Germanium-channel MOSFET — analytical study , 2008, 2008 IEEE Silicon Nanoelectronics Workshop.

[20]  M. Vinet,et al.  Sub-100nm high-K metal gate GeOI pMOSFETs performance: Impact of the Ge channel orientation and of the source injection velocity , 2009, 2009 International Symposium on VLSI Technology, Systems, and Applications.

[21]  K. Saraswat,et al.  Experimental demonstration of high mobility Ge NMOS , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[22]  C. H. Lee,et al.  Record-high electron mobility in Ge n-MOSFETs exceeding Si universality , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[23]  O. Faynot,et al.  GeOI pMOSFETs Scaled Down to 30-nm Gate Length With Record Off-State Current , 2010, IEEE Electron Device Letters.

[24]  Vita Pi-Ho Hu,et al.  Investigation of Electrostatic Integrity for Ultrathin-Body Germanium-On-Nothing MOSFET , 2011, IEEE Transactions on Nanotechnology.

[25]  Vita Pi-Ho Hu,et al.  Impact of Quantum Confinement on Short-Channel Effects for Ultrathin-Body Germanium-on-Insulator MOSFETs , 2011, IEEE Electron Device Letters.