A peroxisomal ubiquitin ligase complex forms a retrotranslocation channel

[1]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[2]  Conrad C. Huang,et al.  UCSF ChimeraX: Structure visualization for researchers, educators, and developers , 2020, Protein science : a publication of the Protein Society.

[3]  W. Chung,et al.  Recent insights into peroxisome biogenesis and associated diseases , 2020, Journal of Cell Science.

[4]  G. Hummer,et al.  Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex , 2020, Science.

[5]  Devin K. Schweppe,et al.  TMTpro reagents: a set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples , 2020, Nature Methods.

[6]  Paul Emsley,et al.  Current developments in Coot for macromolecular model building of Electron Cryo‐microscopy and Crystallographic Data , 2019, Protein science : a publication of the Protein Society.

[7]  Yong Zi Tan,et al.  Structure and Drug Resistance of the Plasmodium falciparum Transporter PfCRT , 2019, Nature.

[8]  Christopher J. Williams,et al.  Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix , 2019, Acta crystallographica. Section D, Structural biology.

[9]  R. Erdmann,et al.  Current Advances in Protein Import into Peroxisomes , 2019, The Protein Journal.

[10]  S. Subramani,et al.  Peroxisome biogenesis, membrane contact sites, and quality control , 2018, EMBO reports.

[11]  T. Rapoport,et al.  Structure of the post-translational protein translocation machinery of the ER membrane , 2018, Nature.

[12]  Erik Lindahl,et al.  New tools for automated high-resolution cryo-EM structure determination in RELION-3 , 2018, eLife.

[13]  Chris Williams,et al.  Insights into the Role of the Peroxisomal Ubiquitination Machinery in Pex13p Degradation in the Yeast Hansenula polymorpha. , 2018, Journal of molecular biology.

[14]  T. Rapoport,et al.  Mechanistic insights into ER-associated protein degradation. , 2018, Current opinion in cell biology.

[15]  Andreas Martin,et al.  The peroxisomal AAA-ATPase Pex1/Pex6 unfolds substrates by processive threading , 2018, Nature Communications.

[16]  D. Bicho,et al.  Protein transport into peroxisomes: Knowns and unknowns , 2017, BioEssays : news and reviews in molecular, cellular and developmental biology.

[17]  Joseph H. Davis,et al.  Addressing preferred specimen orientation in single-particle cryo-EM through tilting , 2017, Nature Methods.

[18]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[19]  Tom A. Rapoport,et al.  Reconstitution of the tubular endoplasmic reticulum network with purified components , 2017, Nature.

[20]  A. Kossiakoff,et al.  Generating Conformation and Complex-Specific Synthetic Antibodies. , 2017, Methods in molecular biology.

[21]  N. Braverman,et al.  Peroxisome biogenesis disorders , 2016, Translational science of rare diseases.

[22]  Zachary N. Russ,et al.  Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways , 2016, Nature Communications.

[23]  A. Kossiakoff,et al.  Conformational Chaperones for Structural Studies of Membrane Proteins Using Antibody Phage Display with Nanodiscs. , 2016, Structure.

[24]  Hidde Ploegh,et al.  Crystal structure of a substrate-engaged SecY protein-translocation channel , 2016, Nature.

[25]  R. Hegde,et al.  Structure of the Sec61 channel opened by a signal sequence , 2016, Science.

[26]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[27]  David Baker,et al.  Unique double-ring structure of the peroxisomal Pex1/Pex6 ATPase complex revealed by cryo-electron microscopy , 2015, Proceedings of the National Academy of Sciences.

[28]  K. Okumoto,et al.  Distinct Modes of Ubiquitination of Peroxisome-targeting Signal Type 1 (PTS1) Receptor Pex5p Regulate PTS1 Protein Import* , 2014, The Journal of Biological Chemistry.

[29]  Hemant D. Tagare,et al.  The Local Resolution of Cryo-EM Density Maps , 2013, Nature Methods.

[30]  Piotr Sliz,et al.  Collaboration gets the most out of software , 2013, eLife.

[31]  W. Chazin,et al.  Structure of an E3:E2~Ub complex reveals an allosteric mechanism shared among RING/U-box ligases. , 2012, Molecular cell.

[32]  Harald W. Platta,et al.  The exportomer: the peroxisomal receptor export machinery , 2012, Cellular and Molecular Life Sciences.

[33]  Danny T. Huang,et al.  BIRC7–E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer , 2012, Nature Structural &Molecular Biology.

[34]  Jian Peng,et al.  Template-based protein structure modeling using the RaptorX web server , 2012, Nature Protocols.

[35]  James H. Naismith,et al.  Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis , 2012, Nature.

[36]  Harald W. Platta,et al.  The RING‐type ubiquitin ligases Pex2p, Pex10p and Pex12p form a heteromeric complex that displays enhanced activity in an ubiquitin conjugating enzyme‐selective manner , 2012, The FEBS journal.

[37]  M. Wilmanns,et al.  Insights into ubiquitin‐conjugating enzyme/ co‐activator interactions from the structure of the Pex4p:Pex22p complex , 2012, The EMBO journal.

[38]  H. Waterham,et al.  Genetic classification and mutational spectrum of more than 600 patients with a Zellweger syndrome spectrum disorder , 2011, Human mutation.

[39]  A. Kossiakoff,et al.  Allosteric Control of Ligand Binding Affinity Using Engineered Conformation-Specific Effector Proteins , 2010, Nature Structural &Molecular Biology.

[40]  W. Schliebs,et al.  Peroxisomal protein import and ERAD: variations on a common theme , 2010, Nature Reviews Molecular Cell Biology.

[41]  Tal Pupko,et al.  ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids , 2010, Nucleic Acids Res..

[42]  W. Schliebs,et al.  The peroxisomal importomer constitutes a large and highly dynamic pore , 2010, Nature Cell Biology.

[43]  Harald W. Platta,et al.  Pex2 and Pex12 Function as Protein-Ubiquitin Ligases in Peroxisomal Protein Import , 2009, Molecular and Cellular Biology.

[44]  R. Deshaies,et al.  RING domain E3 ubiquitin ligases. , 2009, Annual review of biochemistry.

[45]  Geoffrey J. Barton,et al.  Jalview Version 2—a multiple sequence alignment editor and analysis workbench , 2009, Bioinform..

[46]  M. van den Berg,et al.  Pex10p functions as an E3 ligase for the Ubc4p-dependent ubiquitination of Pex5p. , 2008, Biochemical and biophysical research communications.

[47]  B. Warscheid,et al.  Members of the E2D (UbcH5) Family Mediate the Ubiquitination of the Conserved Cysteine of Pex5p, the Peroxisomal Import Receptor* , 2008, Journal of Biological Chemistry.

[48]  M. van den Berg,et al.  A Conserved Cysteine Is Essential for Pex4p-dependent Ubiquitination of the Peroxisomal Import Receptor Pex5p* , 2007, Journal of Biological Chemistry.

[49]  Harald W. Platta,et al.  Ubiquitination of the peroxisomal import receptor Pex5p is required for its recycling , 2007, The Journal of cell biology.

[50]  S. Subramani,et al.  A Conserved Cysteine Residue of Pichia pastoris Pex20p Is Essential for Its Recycling from the Peroxisome to the Cytosol* , 2007, Journal of Biological Chemistry.

[51]  R. Schiestl,et al.  High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method , 2007, Nature Protocols.

[52]  Suresh Subramani,et al.  Uniqueness of the mechanism of protein import into the peroxisome matrix: transport of folded, co-factor-bound and oligomeric proteins by shuttling receptors. , 2006, Biochimica et biophysica acta.

[53]  J. Yates,et al.  Dynamics of the peroxisomal import cycle of PpPex20p , 2006, The Journal of cell biology.

[54]  J. Hiltunen,et al.  The rat liver peroxisomal membrane forms a permeability barrier for cofactors but not for small metabolites in vitro , 2004, Journal of Cell Science.

[55]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[56]  M. Vignali,et al.  A Facile Method for High-throughput Co-expression of Protein Pairs*S , 2004, Molecular & Cellular Proteomics.

[57]  Robert C. Edgar,et al.  MUSCLE: a multiple sequence alignment method with reduced time and space complexity , 2004, BMC Bioinformatics.

[58]  Bert van den Berg,et al.  X-ray structure of a protein-conducting channel , 2004, Nature.

[59]  P. Lazarow,et al.  Pex18p Is Constitutively Degraded during Peroxisome Biogenesis* , 2001, The Journal of Biological Chemistry.

[60]  S. Subramani,et al.  The Human Peroxisomal Targeting Signal Receptor, Pex5p, Is Translocated into the Peroxisomal Matrix and Recycled to the Cytosol , 2001, Cell.

[61]  K. Wilson,et al.  Efficient anisotropic refinement of macromolecular structures using FFT. , 1999, Acta crystallographica. Section D, Biological crystallography.

[62]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.