Advanced Coarsening Schemes for Graph Partitioning

The graph partitioning problem is widely used and studied in many practical and theoretical applications. Today, multilevel strategies represent one of the most effective and efficient generic frameworks for solving this problem on large-scale graphs. Most of the attention in designing multilevel partitioning frameworks has been on the refinement phase. In this work, we focus on the coarsening phase, which is responsible for creating structures similar to the original but smaller graphs. We compare different matching- and AMG-based coarsening schemes, experiment with the algebraic distance between nodes, and demonstrate computational results on several classes of graphs that emphasize the running time and quality advantages of different coarsening schemes.

[1]  C. Walshaw JOSTLE : parallel multilevel graph-partitioning software – an overview , 2008 .

[2]  Huan Liu,et al.  Community evolution in dynamic multi-mode networks , 2008, KDD.

[3]  Michael T. Heath,et al.  Scientific Computing , 2018 .

[4]  D. Lambert,et al.  Strategic Logistics Management , 1987 .

[5]  Curt Jones,et al.  Finding Good Approximate Vertex and Edge Partitions is NP-Hard , 1992, Inf. Process. Lett..

[6]  Michael T. Heath,et al.  Scientific Computing: An Introductory Survey , 1996 .

[7]  Peter Sanders,et al.  Engineering Multilevel Graph Partitioning Algorithms , 2010, ESA.

[8]  Ilya Safro,et al.  Graph minimum linear arrangement by multilevel weighted edge contractions , 2006, J. Algorithms.

[9]  Peter Sanders,et al.  Engineering Algorithms for Approximate Weighted Matching , 2007, WEA.

[10]  Ilya Safro,et al.  Comparison of Coarsening Schemes for Multilevel Graph Partitioning , 2009, LION.

[11]  Stefan Hougardy,et al.  A simple approximation algorithm for the weighted matching problem , 2003, Inf. Process. Lett..

[12]  Alex Pothen,et al.  PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .

[13]  D. Ron,et al.  Multigrid Solvers and Multilevel Optimization Strategies , 2003 .

[14]  Ilya Safro,et al.  Algebraic Distance on Graphs , 2011, SIAM J. Sci. Comput..

[15]  Vipin Kumar,et al.  Analysis of Multilevel Graph Partitioning , 1995, Proceedings of the IEEE/ACM SC95 Conference.

[16]  Jennifer A. Scott,et al.  A Multilevel Algorithm for Wavefront Reduction , 2001, SIAM J. Sci. Comput..

[17]  Inderjit S. Dhillon,et al.  A fast kernel-based multilevel algorithm for graph clustering , 2005, KDD '05.

[18]  Chris Walshaw,et al.  Multilevel Refinement for Combinatorial Optimisation Problems , 2004, Ann. Oper. Res..

[19]  Peter Sanders,et al.  Distributed Evolutionary Graph Partitioning , 2011, ALENEX.

[20]  Ilya Safro,et al.  Multilevel algorithms for linear ordering problems , 2009, JEAL.

[21]  William W. Hager,et al.  An exact algorithm for graph partitioning , 2013, Math. Program..

[22]  Thomas Sauerwald,et al.  A new diffusion-based multilevel algorithm for computing graph partitions of very high quality , 2008, 2008 IEEE International Symposium on Parallel and Distributed Processing.

[23]  Panos M. Pardalos,et al.  Linear and quadratic programming approaches for the general graph partitioning problem , 2010, J. Glob. Optim..

[24]  Karsten Klein,et al.  An Experimental Evaluation of Multilevel Layout Methods , 2010, GD.

[25]  William W. Hager,et al.  Graph Partitioning and Continuous Quadratic Programming , 1999, SIAM J. Discret. Math..

[26]  Byung Ro Moon,et al.  Genetic Algorithm and Graph Partitioning , 1996, IEEE Trans. Computers.

[27]  A. Brandt Multiscale Scientific Computation: Review 2001 , 2002 .

[28]  Ronen Basri,et al.  Fast multiscale image segmentation , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[29]  Ilya Safro,et al.  Relaxation-based coarsening and multiscale graph organization , 2010, Multiscale Model. Simul..

[30]  Peter Sanders,et al.  Engineering a scalable high quality graph partitioner , 2009, 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS).

[31]  R. M. Mattheyses,et al.  A Linear-Time Heuristic for Improving Network Partitions , 1982, 19th Design Automation Conference.

[32]  Chris Walshaw,et al.  A Combined Evolutionary Search and Multilevel Optimisation Approach to Graph-Partitioning , 2004, J. Glob. Optim..

[33]  Franz Rendl,et al.  Solving Graph Bisection Problems with Semidefinite Programming , 2000, INFORMS J. Comput..

[34]  Robert van Engelen,et al.  Graph Partitioning for High Performance Scienti c Simulations , 2000 .