Operating Conditions for the Hemodialysis Treatment Based on the Volume Averaging Theory

[1]  C. L. Tien,et al.  Boundary and inertia effects on flow and heat transfer in porous media , 1981 .

[2]  Yoshihiko Sano,et al.  A Porous Media Approach for Hollow Fiber Transport Phenomena , 2014 .

[3]  H. M. Yeh,et al.  Numerical analysis of mass transfer in double-pass parallel-plate dialyzers with external recycle , 2009, Comput. Chem. Eng..

[4]  Wen-Qiang Lu,et al.  A numerical simulation for mass transfer through the porous membrane of parallel straight channels , 2010 .

[5]  Chen Yang,et al.  A synthesis of tortuosity and dispersion in effective thermal conductivity of porous media , 2010 .

[6]  Thomas A Golper,et al.  Technical breakthroughs in the wearable artificial kidney (WAK). , 2009, Clinical journal of the American Society of Nephrology : CJASN.

[7]  S. Whitaker,et al.  One- and Two-Equation Models for Transient Diffusion Processes in Two-Phase Systems , 1993 .

[8]  Sigdell Je,et al.  Calculation of combined diffusive and convective mass transfer. , 1982 .

[9]  Abdolreza Moghadassi,et al.  Numerical simulation of mass transfer in gas-liquid hollow fiber membrane contactors for laminar flow conditions , 2009, Simul. Model. Pract. Theory.

[10]  Hitoshi Koyama,et al.  A Numerical Study of Thermal Dispersion in Porous Media , 1996 .

[11]  Tung-Wen Cheng,et al.  Membrane ultrafiltration in hollow-fiber module with the consideration of pressure declination along the fibers , 1998 .

[12]  A. Katchalsky,et al.  Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. , 1958, Biochimica et biophysica acta.

[13]  P. Cheng,et al.  Heat Transfer in Geothermal Systems , 1979 .

[14]  O. Kedem,et al.  Commentary on 'Thermodynamic Analysis of the Permeability of Biological Membranes to Non-Electrolytes'. , 1989, Biochimica et biophysica acta.

[15]  Ho-Ming Yeh,et al.  The analytical and experimental studies of the parallel-plate concurrent dialysis system coupled with ultrafiltration , 2006 .

[16]  Vineet Kumar,et al.  Computer simulation of membrane processes: ultrafiltration and dialysis units , 2000 .

[17]  Greg Leslie,et al.  CFD simulations of membrane filtration zone in a submerged hollow fibre membrane bioreactor using a porous media approach , 2010 .

[18]  Cécile Legallais,et al.  A theoretical model to predict the in vitro performance of hemodiafilters , 2000 .

[19]  Jr-Wei Tu,et al.  Effect of ultrafiltration on the mass-transfer efficiency improvement in a parallel-plate countercurrent dialysis system , 2009 .

[20]  Akira Nakayama,et al.  An equation for thermal dispersion flux transport and its mathematical modelling for heat and fluid flow in a porous medium , 2006, Journal of Fluid Mechanics.

[21]  Akira Nakayama,et al.  A general bioheat transfer model based on the theory of porous media , 2008 .

[22]  Jacek Waniewski,et al.  Impact of convective transport on dialyzer clearance , 2003, Journal of Artificial Organs.

[23]  Akira Nakayama,et al.  PC-aided numerical heat transfer and convective flow , 1995 .

[24]  Jacek Waniewski,et al.  Mathematical modeling of fluid and solute transport in hemodialysis and peritoneal dialysis , 2006 .

[25]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[26]  Yoshihiko Sano,et al.  A Porous Media Approach for Analyzing a Countercurrent Dialyzer System , 2012 .

[27]  Andrew Davenport,et al.  A wearable haemodialysis device for patients with end-stage renal failure: a pilot study , 2007, The Lancet.

[28]  Yoshihiko Sano,et al.  Numerical Approach for Optimal Design of a Hollow Fiber Dialyzer System , 2014 .