Temporal steering in four dimensions with applications to coupled qubits and magnetoreception

Einstein--Podolsky--Rosen (EPR) steering allows Alice to remotely prepare a state in some specific bases for Bob through her choice of measurements. The temporal analog of EPR steering, temporal steering, also reveals the steerability of a single system between different times. Focusing on a four-dimensional system, here we investigate the dynamics of the temporal steering measures, the temporal steering robustness, using five mutually unbiased bases. As an example of an application, we use these measures to examine the temporal correlations in a radical pair model of magnetoreception. We find that, due to interactions with a static nuclear spin, the radical pair model exhibits strong non-Markovianity.

[1]  T. Ritz,et al.  Photoreceptor-based magnetoreception: optimal design of receptor molecules, cells, and neuronal processing , 2010, Journal of The Royal Society Interface.

[2]  R. M. Angelo,et al.  Quantification of Einstein-Podolski-Rosen steering for two-qubit states , 2015, 1510.08030.

[3]  Miguel Navascués,et al.  Quantifying Einstein-Podolsky-Rosen steering. , 2013, Physical review letters.

[4]  Qiang Zhang,et al.  Genuine High-Order Einstein-Podolsky-Rosen Steering. , 2015, Physical review letters.

[5]  Guang-Yin Chen,et al.  Hierarchy of non-Markovianity and k -divisibility phase diagram of quantum processes in open systems , 2015, 1504.07373.

[6]  F. Nori,et al.  Quantum biology , 2012, Nature Physics.

[7]  V. Scarani,et al.  One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering , 2011, 1109.1435.

[8]  Martin B. Plenio,et al.  Quantum limits for the magnetic sensitivity of a chemical compass , 2012 .

[9]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  A. Rajagopal,et al.  Joint measurability and temporal steering , 2014, 1412.0871.

[11]  Bernd Schierwater,et al.  Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass , 2004, Naturwissenschaften.

[12]  Gian Giacomo Guerreschi,et al.  Quantum control and entanglement in a chemical compass. , 2009, Physical review letters.

[13]  Reid,et al.  Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification. , 1989, Physical review. A, General physics.

[14]  Franco Nori,et al.  Distinguishing quantum and classical transport through nanostructures. , 2010, Physical review letters.

[15]  A C Doherty,et al.  Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. , 2007, Physical review letters.

[16]  Daniel Cavalcanti,et al.  Inequivalence of entanglement, steering, and Bell nonlocality for general measurements , 2015, 1501.03332.

[17]  Č. Brukner,et al.  Quantum Entanglement in Time , 2004, quant-ph/0402127.

[18]  F. Verstraete,et al.  Separable States can be used to distribute entanglement. , 2003, Physical review letters.

[19]  Andreas Klappenecker,et al.  Constructions of Mutually Unbiased Bases , 2003, International Conference on Finite Fields and Applications.

[20]  Susana F Huelga,et al.  Entanglement and non-markovianity of quantum evolutions. , 2009, Physical review letters.

[21]  J. Morton,et al.  Sustained quantum coherence and entanglement in the avian compass. , 2009, Physical review letters.

[22]  Garg,et al.  Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? , 1985, Physical review letters.

[23]  Franco Nori,et al.  Corrigendum: Leggett–Garg inequalities (2014 Rep. Prog. Phys. 77 016001) , 2014 .

[24]  Thorsten Ritz,et al.  Magnetic compass of birds is based on a molecule with optimal directional sensitivity. , 2009, Biophysical journal.

[25]  Sae Woo Nam,et al.  Conclusive quantum steering with superconducting transition-edge sensors , 2011, Nature Communications.

[26]  Dagomir Kaszlikowski,et al.  Quantum coherence and sensitivity of avian magnetoreception. , 2012, Physical review letters.

[27]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.

[28]  F. Nori,et al.  Radical-pair model of magnetoreception with spin–orbit coupling , 2013, 1309.5882.

[29]  Franco Nori,et al.  Temporal steering and security of quantum key distribution with mutually unbiased bases against individual attacks , 2015, 1503.00612.

[30]  F. Nori,et al.  Leggett-Garg inequality in electron interferometers , 2012, 1209.2977.

[31]  Franco Nori,et al.  Quantifying Non-Markovianity with Temporal Steering. , 2015, Physical review letters.

[32]  Otfried Gühne,et al.  Joint measurability of generalized measurements implies classicality. , 2014, Physical review letters.

[33]  Rupert Ursin,et al.  Loophole-free Einstein–Podolsky–Rosen experiment via quantum steering , 2011, 1111.0760.

[34]  Thorsten Ritz,et al.  Resonance effects indicate a radical-pair mechanism for avian magnetic compass , 2004, Nature.

[35]  Paul Skrzypczyk,et al.  Postquantum Steering. , 2015, Physical review letters.

[36]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[37]  Franco Nori,et al.  Temporal steering inequality , 2013, 1310.4970.

[38]  F. Nori,et al.  Certifying single-system steering for quantum-information processing , 2014, 1411.3040.

[39]  T. Fritz Quantum correlations in the temporal Clauser–Horne–Shimony–Holt (CHSH) scenario , 2010 .

[40]  T. Moroder,et al.  Bounding temporal quantum correlations. , 2013, Physical review letters.

[41]  F. Nori,et al.  Experimental temporal quantum steering , 2016, Scientific Reports.

[42]  Q. Gong,et al.  Multipartite Einstein–Podolsky–Rosen steering and genuine tripartite entanglement with optical networks , 2014, Nature Physics.

[43]  Otfried Gühne,et al.  One-to-One Mapping between Steering and Joint Measurability Problems. , 2015, Physical review letters.

[44]  H. M. Wiseman,et al.  Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox , 2009, 0907.1109.

[45]  D. J. Saunders,et al.  Experimental EPR-steering using Bell-local states , 2009, 0909.0805.

[46]  G. H. Aguilar,et al.  Detection of entanglement in asymmetric quantum networks and multipartite quantum steering , 2014, Nature Communications.

[47]  Tamás Vértesi,et al.  Joint measurability, Einstein-Podolsky-Rosen steering, and Bell nonlocality. , 2014, Physical review letters.

[48]  C. Emary,et al.  Temporal quantum correlations and Leggett-Garg inequalities in multilevel systems. , 2013, Physical review letters.

[49]  Leandro Aolita,et al.  The Resource Theory of Steering , 2015, TQC.

[50]  A. Zeilinger,et al.  Entanglement in mutually unbiased bases , 2011, 1102.2080.

[51]  David Jennings,et al.  Quantum steering ellipsoids. , 2013, Physical review letters.

[52]  S. Kais,et al.  Quantum coherence and entanglement in the avian compass. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  J. Watrous,et al.  Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering. , 2015, Physical review letters.

[54]  Antony R. Lee,et al.  Quantification of Gaussian quantum steering. , 2014, Physical review letters.

[55]  Henrik Mouritsen,et al.  Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.