A wide-angle finite-element beam propagation method

A wide-angle finite-element beam propagation method based on the Pade approximation is developed. Considerable improvement in accuracy over the paraxial approximation is achieved with virtually no additional computation. In the present algorithm, the quadratic element, transparent boundary condition, adaptive reference index, and adaptive grid are effectively utilized.

[1]  Stegeman,et al.  Multisoliton emission from a nonlinear waveguide. , 1986, Physical review. A, General physics.

[2]  Masanori Koshiba,et al.  A finite element beam propagation method for strongly guiding and longitudinally varying optical waveguides , 1996 .

[3]  H. Hernández-Figueroa Improved split-step schemes for nonlinear-optical propagation , 1994 .

[4]  Reinhard Maerz,et al.  Results of benchmark tests for different numerical BPM algorithms , 1994, Integrated Optoelectronics.

[5]  M. Koshiba,et al.  A wide-angle finite-element beam propagation method , 1996, IEEE Photonics Technology Letters.

[6]  H. Chou,et al.  An iterative finite difference beam propagation method for modeling second-order nonlinear effects in optical waveguides , 1998 .

[7]  J. B. Davies,et al.  Finite element/finite difference propagation algorithm for integrated optical device , 1989 .

[8]  Frank Schmidt,et al.  An adaptive approach to the numerical solution of Fresnel's wave equation , 1993 .

[9]  Hugo E. Hernandez-Figueroa,et al.  Improved all-optical switching in a three-slab nonlinear directional coupler with gain , 1994 .

[10]  Masanori Koshiba,et al.  A wide-angle beam propagation method based on a finite element scheme , 1997 .

[11]  Masanori Koshiba,et al.  Simple and Efficient Adaptive Mesh Generation for Approximate Scalar Guided-Mode and Beam-Propagation Solutions , 1998 .

[12]  F. D. Pasquale,et al.  Controlled spatial bright soliton emission from a nonlinear waveguide. , 1994, Optics letters.

[13]  Raj Mittra,et al.  An application of the perfectly matched layer (PML) concept to the finite element method frequency domain analysis of scattering problems , 1995 .

[14]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[15]  C.L. Xu,et al.  A wide-angle vector beam propagation method , 1992, IEEE Photonics Technology Letters.

[16]  F. Fernández,et al.  Marching methods for the solution of the generalized nonlinear Schrodinger equation , 1995 .

[17]  A. Maruta,et al.  Transparent boundary for the finite-element beam-propagation method. , 1993, Optics letters.

[18]  小柴 正則 Optical waveguide analysis , 1992 .

[19]  Masanori Koshiba,et al.  Split-step finite-element method applied to nonlinear integrated optics , 1990 .

[20]  H.-P. Nolting,et al.  Results of benchmark tests for different numerical BPM algorithms , 1995 .

[21]  G. R. Hadley,et al.  Wide-angle beam propagation using Pade approximant operators. , 1992, Optics letters.