A general central limit theorem under sublinear expectations

[1]  Fuqing Gao,et al.  Pathwise properties and homeomorphic flows for stochastic differential equations driven by G-Brownian motion , 2009 .

[2]  Shige Peng,et al.  Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations , 2009 .

[3]  Guangyan Jia The minimal sublinear expectations and their related properties , 2009 .

[4]  Shige Peng,et al.  A New Central Limit Theorem under Sublinear Expectations , 2008, 0803.2656.

[5]  Shige Peng,et al.  Function Spaces and Capacity Related to a Sublinear Expectation: Application to G-Brownian Motion Paths , 2008, 0802.1240.

[6]  S. Peng G-Brownian Motion and Dynamic Risk Measure under Volatility Uncertainty , 2007, 0711.2834.

[7]  L. Denis,et al.  A THEORETICAL FRAMEWORK FOR THE PRICING OF CONTINGENT CLAIMS IN THE PRESENCE OF MODEL UNCERTAINTY , 2006, math/0607111.

[8]  S. Peng Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation , 2006, math/0601699.

[9]  S. Peng G -Expectation, G -Brownian Motion and Related Stochastic Calculus of Itô Type , 2006, math/0601035.

[10]  Larry G. Epstein,et al.  Ambiguity, risk, and asset returns in continuous time , 2000 .

[11]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[12]  Terry Lyons,et al.  Uncertain volatility and the risk-free synthesis of derivatives , 1995 .

[13]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[14]  Lihe Wang On the regularity theory of fully nonlinear parabolic equations: II , 1992 .

[15]  Bo Zhang,et al.  Martingale characterization of G-Brownian motion , 2009 .

[16]  G. Choquet Theory of capacities , 1954 .