Thermodynamic structure of Lanczos-Lovelock field equations from near-horizon symmetries

It is well known that, for a wide class of spacetimes with horizons, Einstein equations near the horizon can be written as a thermodynamic identity. It is also known that the Einstein tensor acquires a highly symmetric form near static, as well as stationary, horizons. We show that, for generic static spacetimes, this highly symmetric form of the Einstein tensor leads quite naturally and generically to the interpretation of the near-horizon field equations as a thermodynamic identity. We further extend this result to generic static spacetimes in Lanczos-Lovelock gravity, and show that the near-horizon field equations again represent a thermodynamic identity in all these models. These results confirm the conjecture that this thermodynamic perspective of gravity extends far beyond Einstein's theory.

[1]  T. Padmanabhan Entropy density of spacetime and thermodynamic interpretation of field equations of gravity in any diffeomorphism invariant theory , 2009, 0903.1254.

[2]  T. Padmanabhan Gravity: the inside story , 2008 .

[3]  T. Padmanabhan,et al.  Dark Energy and its Implications for Gravity , 2008, 0807.2356.

[4]  T. Padmanabhan,et al.  Is gravitational entropy quantized , 2008, 0807.1481.

[5]  T. Padmanabhan,et al.  Dark energy and gravity , 2007, 0705.2533.

[6]  R. Cai,et al.  Deep connection between thermodynamics and gravity in Gauss-Bonnet braneworlds , 2007, hep-th/0701261.

[7]  R. Cai,et al.  Thermodynamical properties of apparent horizon in warped DGP braneworld , 2007, hep-th/0701198.

[8]  Chao Huang,et al.  Thermodynamic Properties of Spherically-Symmetric, Uniformly-Accelerated Reference Frames , 2007, gr-qc/0701078.

[9]  T. Padmanabhan,et al.  Entropy of null surfaces and dynamics of spacetime , 2006, gr-qc/0701003.

[10]  T. Padmanabhan,et al.  Einstein's equations as a thermodynamic identity: The Cases of stationary axisymmetric horizons and evolving spherically symmetric horizons , 2006, gr-qc/0701002.

[11]  R. Cai,et al.  Thermodynamic Behavior of Field Equations for f(R) Gravity , 2006, gr-qc/0612089.

[12]  R. Cai,et al.  Unified first law and the thermodynamics of the apparent horizon in the FRW universe , 2006, gr-qc/0611071.

[13]  R. Cai,et al.  Thermodynamic behavior of the Friedmann equation at the apparent horizon of the FRW universe , 2006, hep-th/0609128.

[14]  T. Padmanabhan,et al.  Holography of gravitational action functionals , 2006, hep-th/0608120.

[15]  T. Padmanabhan,et al.  Thermodynamic route to field equations in Lanczos-Lovelock gravity , 2006, hep-th/0607240.

[16]  G. Volovik VACUUM ENERGY: MYTHS AND REALITY , 2006, gr-qc/0604062.

[17]  T.Padmanabhan,et al.  Zero-point length from string fluctuations , 2005, hep-th/0509090.

[18]  X. Calmet,et al.  Minimum length from quantum mechanics and classical general relativity. , 2004, Physical review letters.

[19]  M. Visser,et al.  Dirty black holes: Symmetries at stationary nonstatic horizons , 2004, gr-qc/0403026.

[20]  M. Visser,et al.  Dirty black holes: spacetime geometry and near-horizon symmetries , 2004, gr-qc/0402069.

[21]  S. Ross,et al.  On Gauss-Bonnet black hole entropy , 2004, gr-qc/0402044.

[22]  T. Padmanabhan Entropy of static spacetimes and microscopic density of states , 2003, gr-qc/0308070.

[23]  G. Volovik,et al.  The Universe in a Helium Droplet , 2003 .

[24]  T. Padmanabhan Topological interpretation of the horizon temperature , 2003 .

[25]  T. Padmanabhan Essay: The Holography of Gravity Encoded in a Relation Between Entropy, Horizon Area, and Action for Gravity , 2002 .

[26]  T. Padmanabhan Classical and quantum thermodynamics of horizons in spherically symmetric spacetimes , 2002 .

[27]  M. Visser,et al.  Einstein gravity as an emergent phenomenon , 2001, gr-qc/0106002.

[28]  G. Volovik,et al.  Superfluid analogies of cosmological phenomena , 2000, gr-qc/0005091.

[29]  T. Padmanabhan Event horizon of a Schwarzschild black hole: magnifying glass for Planck length physics , 1999 .

[30]  T. Padmanabhan Quantum Structure of Spacetime and Entropy of Schwarschild Black Holes , 1998 .

[31]  T. Padmanabhan Hypothesis of path integral duality. I. Quantum gravitational corrections to the propagator , 1998 .

[32]  T. Padmanabhan Quantum structure of spacetime and blackhole entropy , 1998, hep-th/9801015.

[33]  L. Sriramkumar,et al.  Hypothesis of path integral duality. II. Corrections to quantum field theoretic results , 1997, gr-qc/9710104.

[34]  T. Padmanabhan DUALITY AND ZERO-POINT LENGTH OF SPACETIME , 1996, hep-th/9608182.

[35]  Jacobson,et al.  Thermodynamics of spacetime: The Einstein equation of state. , 1995, Physical review letters.

[36]  L. Garay Quantum Gravity and Minimum Length , 1994, gr-qc/9403008.

[37]  Jacobson,et al.  Black hole entropy and higher curvature interactions. , 1993, Physical review letters.

[38]  Rovelli,et al.  Weaving a classical metric with quantum threads. , 1992, Physical review letters.

[39]  T. Padmanabhan Limitations on the operational definition of spacetime events and quantum gravity , 1987 .

[40]  T. Padmanabhan Physical significance of planck length , 1985 .

[41]  T. Yoneya Geometry, Gravity and Dual Strings , 1976 .

[42]  B. Dewitt GRAVITY: A UNIVERSAL REGULATOR , 1964 .

[43]  T. Padmanabhan Gravity and the thermodynamics of horizons , 2005 .

[44]  H. Snyder,et al.  Quantized Space-Time , 1947 .