TRIPLE MICROLENS OGLE-2008-BLG-092L: BINARY STELLAR SYSTEM WITH A CIRCUMPRIMARY URANUS-TYPE PLANET

We present the gravitational microlensing discovery of a 4 M_Uranus planet that orbits a 0.7 M_Sun star at ~18 AU. This is the first known analog of Uranus. Similar planets, i.e., cold ice-giants, are inaccessible to either radial velocity or transit methods because of the long orbital periods, while low reflected light prevents direct imaging. We discuss how similar planets may contaminate the sample of the very short microlensing events that are interpreted as free-floating planets with an estimated rate of 1.8 per main sequence star. Moreover, the host star has a nearby stellar (or brown dwarf) companion. The projected separation of the planet is only ~3 times smaller than that of the companion star, suggesting significant dynamical interactions.

[1]  R. A. Street,et al.  FREQUENCY OF SOLAR-LIKE SYSTEMS AND OF ICE AND GAS GIANTS BEYOND THE SNOW LINE FROM HIGH-MAGNIFICATION MICROLENSING EVENTS IN 2005–2008 , 2010, 1001.0572.

[2]  B. Gaudi,et al.  Planetary Detection Efficiency of the Magnification 3000 Microlensing Event OGLE-2004-BLG-343 , 2005, astro-ph/0507079.

[3]  P. Bodenheimer,et al.  THE FORMATION OF URANUS AND NEPTUNE: CHALLENGES AND IMPLICATIONS FOR INTERMEDIATE-MASS EXOPLANETS , 2014, 1404.5018.

[4]  K. Ulaczyk,et al.  Discovery of a Jupiter/Saturn Analog with Gravitational Microlensing , 2008, Science.

[5]  Harold F. Levison,et al.  THE FORMATION OF URANUS AND NEPTUNE AMONG JUPITER AND SATURN , 2001, astro-ph/0111290.

[6]  Harold F. Levison,et al.  The formation of Uranus and Neptune in the Jupiter–Saturn region of the Solar System , 1999, Nature.

[7]  K. Ulaczyk,et al.  A Jovian-Mass Planet in Microlensing Event OGLE-2005-BLG-071 , 2005 .

[8]  Andrew Gould,et al.  A Natural Formalism for Microlensing , 2000, astro-ph/0001421.

[9]  B. Scott Gaudi,et al.  Microlensing Surveys for Exoplanets , 2012 .

[10]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[11]  B. Oppenheimer,et al.  The Gemini Deep Planet Survey , 2007, 0705.4290.

[12]  C. Alard Image subtraction using a space-varying kernel , 2000 .

[13]  Scott J. Kenyon,et al.  Planet Formation around Stars of Various Masses: The Snow Line and the Frequency of Giant Planets , 2007, 0710.1065.

[14]  Cheongho Han,et al.  Properties of Planetary Caustics in Gravitational Microlensing , 2005, astro-ph/0510206.

[15]  C. H. Ling,et al.  MICROLENSING EVENT MOA-2007-BLG-400: EXHUMING THE BURIED SIGNATURE OF A COOL, JOVIAN-MASS PLANET , 2008, 0809.2997.

[16]  K. Ulaczyk,et al.  MASSES AND ORBITAL CONSTRAINTS FOR THE OGLE-2006-BLG-109Lb,c JUPITER/SATURN ANALOG PLANETARY SYSTEM , 2009, 0911.2706.

[17]  K. Ulaczyk,et al.  The Second Multiple-planet System Discovered by Microlensing: OGLE-2012-BLG-0026Lb, c—A Pair of Jovian Planets beyond the Snow Line , 2013 .

[18]  Neda Safizadeh,et al.  The Use of High-Magnification Microlensing Events in Discovering Extrasolar Planets , 1997 .

[19]  O. Pejcha,et al.  EXTENDED-SOURCE EFFECT AND CHROMATICITY IN TWO-POINT-MASS MICROLENSING , 2007, 0712.2217.

[20]  Jie Li,et al.  Kepler-22b: A 2.4 EARTH-RADIUS PLANET IN THE HABITABLE ZONE OF A SUN-LIKE STAR , 2011, The Astrophysical Journal.

[21]  R. Lupton,et al.  A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.

[22]  M. L. Lidov The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies , 1962 .

[23]  M. Kubiak,et al.  Binary Lenses in OGLE-III EWS Database. Seasons 2006--2008 , 2004 .

[24]  Byeong-Gon Park,et al.  Properties of Central Caustics in Planetary Microlensing , 2005, astro-ph/0505363.

[25]  University of Chicago,et al.  A new channel for the detection of planetary systems through microlensing , 1997, astro-ph/9711013.

[26]  K. Zebrun,et al.  OGLE 2003-BLG-235/MOA 2003-BLG-53: A Planetary Microlensing Event , 2004 .

[27]  S. Tremaine,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .

[28]  D. Bersier,et al.  Cepheid distances from infrared long-baseline interferometry III. Calibration of the surface brightness-color relations , 2004 .

[29]  Howard Isaacson,et al.  An Earth-Sized Planet in the Habitable Zone of a Cool Star , 2014, Science.

[30]  Jennifer C. Yee,et al.  Characterizing Long-Period Transiting Planets Observed by Kepler , 2008, 0805.1936.

[31]  Jan Skowron,et al.  SUPER-MASSIVE PLANETS AROUND LATE-TYPE STARS—THE CASE OF OGLE-2012-BLG-0406Lb , 2013, 1307.4084.

[32]  K. Ulaczyk,et al.  Unbound or distant planetary mass population detected by gravitational microlensing , 2011, Nature.

[33]  S. Lucatello,et al.  Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars IV. Two bulge populations , 2011, 1107.5606.

[34]  C. H. Ling,et al.  PLANETARY AND OTHER SHORT BINARY MICROLENSING EVENTS FROM THE MOA SHORT-EVENT ANALYSIS , 2012, 1203.4560.

[35]  M. R. Haas,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER IV: PLANET SAMPLE FROM Q1-Q8 (22 MONTHS) , 2014 .

[36]  Manchester,et al.  PREDICTIONS FOR MICROLENSING PLANETARY EVENTS FROM CORE ACCRETION THEORY , 2014, 1403.4936.

[37]  Andrew Gould,et al.  REDDENING AND EXTINCTION TOWARD THE GALACTIC BULGE FROM OGLE-III: THE INNER MILKY WAY'S RV ∼ 2.5 EXTINCTION CURVE , 2012, 1208.1263.

[38]  Bohdan Paczynski,et al.  Gravitational microlensing by double stars and planetary systems , 1991 .

[39]  S. Kane Detecting the signatures of Uranus and Neptune , 2011, 1104.5014.

[40]  A. Gal-Yam,et al.  Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars - V. Evidence for a wide age distribution and a complex MDF , 2012, 1211.6848.

[41]  Marcin Kubiak,et al.  The Optical Gravitational Lensing Experiment , 1992 .

[42]  A. Udalski The Optical Gravitational Lensing Experiment . Real Time Data Analysis Systems in the OGLE-III Survey , 2004 .

[43]  Matthew Holman,et al.  Long-Term Stability of Planets in Binary Systems , 1996 .

[44]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[45]  J. Skowron,et al.  Repeating microlensing events in the OGLE data , 2008, 0811.2687.

[46]  K. Ulaczyk,et al.  A terrestrial planet in a ~1-AU orbit around one member of a ∼15-AU binary , 2014, Science.

[47]  Andrew Gould,et al.  Discovering Planetary Systems through Gravitational Microlenses , 1992 .

[48]  A. Gould Hexadecapole Approximation in Planetary Microlensing , 2008, 0801.2578.

[49]  Dana I. Casetti-Dinescu,et al.  Proper Motions in the Galactic Bulge: Plaut’s Window , 2007, Proceedings of the International Astronomical Union.

[50]  Heon-Young Chang,et al.  Microlensing by a wide-separation planet: detectability and boundness , 2013, 1306.1005.

[51]  A Long‐Period Jupiter‐Mass Planet Orbiting the Nearby M Dwarf GJ 849 , 2006, astro-ph/0610179.

[52]  M. Bessell,et al.  JHKLM PHOTOMETRY: STANDARD SYSTEMS, PASSBANDS, AND INTRINSIC COLORS , 1988 .

[53]  Khadeejah A. Zamudio,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER. V. PLANET SAMPLE FROM Q1–Q12 (36 MONTHS) , 2015, 1501.07286.

[54]  MICROLENSING DETECTION AND CHARACTERIZATION OF WIDE-SEPARATION PLANETS , 2004, astro-ph/0409589.

[55]  Planet formation by coagulation: A focus on Uranus and Neptune , 2004, astro-ph/0405215.