Reconstructing Real-Valued Functions from Unsigned Coefficients with Respect to Wavelet and Other Frames

In this paper we consider the following problem of phase retrieval: given a collection of real-valued band-limited functions $$\{\psi _{\lambda }\}_{\lambda \in \Lambda }\subset L^2(\mathbb {R}^d)$${ψλ}λ∈Λ⊂L2(Rd) that constitutes a semi-discrete frame, we ask whether any real-valued function $$f \in L^2(\mathbb {R}^d)$$f∈L2(Rd) can be uniquely recovered from its unsigned convolutions $${\{|f *\psi _\lambda |\}_{\lambda \in \Lambda }}$${|f∗ψλ|}λ∈Λ. We find that under some mild assumptions on the semi-discrete frame and if f has exponential decay at $$\infty $$∞, it suffices to know $$|f *\psi _\lambda |$$|f∗ψλ| on suitably fine lattices to uniquely determine f (up to a global sign factor). We further establish a local stability property of our reconstruction problem. Finally, for two concrete examples of a (discrete) frame of $$L^2(\mathbb {R}^d)$$L2(Rd), $$d=1,2$$d=1,2, we show that through sufficient oversampling one obtains a frame such that any real-valued function with exponential decay can be uniquely recovered from its unsigned frame coefficients.

[1]  R. Balan,et al.  On signal reconstruction without phase , 2006 .

[2]  Peter G. Casazza,et al.  Phase retrieval in infinite-dimensional Hilbert spaces , 2016, 1601.06411.

[3]  Karlheinz Gröchenig,et al.  Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.

[4]  Dustin G. Mixon,et al.  Phase Retrieval with Polarization , 2012, SIAM J. Imaging Sci..

[5]  Alexander V. Tikhonravov,et al.  The phase retrieval problem , 1995 .

[6]  L. Demanet,et al.  Wave atoms and sparsity of oscillatory patterns , 2007 .

[7]  A. Walther The Question of Phase Retrieval in Optics , 1963 .

[8]  J. Wloka,et al.  Funktionalanalysis und Anwendungen , 1971 .

[9]  Philipp Grohs,et al.  Phase Retrieval In The General Setting Of Continuous Frames For Banach Spaces , 2016, SIAM J. Math. Anal..

[10]  Stéphane Mallat,et al.  Phase Retrieval for the Cauchy Wavelet Transform , 2014, ArXiv.

[11]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[12]  E. J. Akutowicz On the determination of the phase of a Fourier integral. I , 1956 .

[13]  B. Bodmann,et al.  Algorithms and error bounds for noisy phase retrieval with low-redundancy frames , 2014, 1412.6678.

[14]  G. Thakur Reconstruction of Bandlimited Functions from Unsigned Samples , 2010, 1007.0198.

[15]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[16]  Frank Wannemaker Phase Retrieval And Zero Crossings Mathematical Methods In Image Reconstruction , 2016 .

[17]  Cheng Cheng,et al.  Phase Retrieval of Real-Valued Signals in a Shift-Invariant Space , 2016, Applied and Computational Harmonic Analysis.

[18]  Y. Meyer Wavelets and Operators , 1993 .

[19]  Norman E. Hurt,et al.  Phase Retrieval and Zero Crossings , 1989 .

[20]  Dustin G. Mixon,et al.  Saving phase: Injectivity and stability for phase retrieval , 2013, 1302.4618.

[21]  Gaurav S. Thakur Three Analytic Problems in Signal Sampling and Reconstruction Theory , 2011 .