Additive splitting methods for parallel solutions of evolution problems

Abstract We demonstrate how a multiplicative splitting method of order P can be utilized to construct an additive splitting method of order P + 3 . The weight coefficients of the additive method depend only on P, which must be an odd number. Specifically we discuss a fourth-order additive method, which is yielded by the Lie-Trotter splitting. We provide error estimates, stability analysis of a test problem, and numerical examples with special discussion of the parallelization properties and applications to nonlinear optics.

[1]  Arthur A. Mirin,et al.  Third Order Difference Methods for Hyperbolic Equations , 2018 .

[2]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[3]  Jesús María Sanz-Serna,et al.  Palindromic 3-stage splitting integrators, a roadmap , 2017, J. Comput. Phys..

[4]  Taras I. Lakoba Stability analysis of the split-step Fourier method on the background of a soliton of the nonlinear Schrödinger equation , 2010, ArXiv.

[5]  G. Strang Accurate partial difference methods I: Linear cauchy problems , 1963 .

[6]  Q. Sheng Global error estimates for exponential splitting , 1994 .

[7]  Dominique Perrin,et al.  The origins of combinatorics on words , 2007, Eur. J. Comb..

[8]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[9]  Winfried Auzinger,et al.  Setup of Order Conditions for Splitting Methods , 2016, CASC.

[10]  Q. Sheng Solving Linear Partial Differential Equations by Exponential Splitting , 1989 .

[11]  Tasso J. Kaper,et al.  N th-order operator splitting schemes and nonreversible systems , 1996 .

[12]  B. Hall Lie Groups, Lie Algebras, and Representations: An Elementary Introduction , 2004 .

[13]  R. Ruth,et al.  Fourth-order symplectic integration , 1990 .

[14]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[15]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[16]  H. Trotter On the product of semi-groups of operators , 1959 .

[17]  B. Hall Lie Groups, Lie Algebras, and Representations , 2003 .

[18]  A. Ostermann,et al.  High order splitting methods for analytic semigroups exist , 2009 .

[19]  Winfried Auzinger,et al.  Practical splitting methods for the adaptive integration of nonlinear evolution equations. Part II: Comparisons of local error estimation and step-selection strategies for nonlinear Schrödinger and wave equations , 2019, Comput. Phys. Commun..

[20]  B. Herbst,et al.  Split-step methods for the solution of the nonlinear Schro¨dinger equation , 1986 .

[21]  Adrian Ankiewicz,et al.  Solitons : nonlinear pulses and beams , 1997 .

[22]  Fernando Casas,et al.  Optimized high-order splitting methods for some classes of parabolic equations , 2011, Math. Comput..

[23]  M. Suzuki,et al.  Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations , 1990 .

[24]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[25]  C. Menyuk,et al.  Optimization of the split-step Fourier method in modeling optical-fiber communications systems , 2003 .

[26]  Mindaugas Radziunas,et al.  Comparison of Split Step Solvers for Multidimensional Schrödinger Problems , 2013, Comput. Methods Appl. Math..

[27]  Marlis Hochbruck,et al.  Exponential Integrators for Large Systems of Differential Equations , 1998, SIAM J. Sci. Comput..

[28]  H. Holden,et al.  Splitting methods for partial differential equations with rough solutions : analysis and MATLAB programs , 2010 .

[29]  R. Glowinski,et al.  A Reliable Split-Step Fourier Method for the Propagation Equation of Ultra-Fast Pulses in Single-Mode Optical Fibers , 2013, Journal of Lightwave Technology.

[30]  Marlis Hochbruck,et al.  Closing the gap between trigonometric integrators and splitting methods for highly oscillatory differential equations , 2018 .

[31]  G. Dahlquist A special stability problem for linear multistep methods , 1963 .

[32]  Wotao Yin,et al.  Splitting Methods in Communication, Imaging, Science, and Engineering , 2017 .

[33]  André D. Bandrauk,et al.  High-order split-step exponential methods for solving coupled nonlinear Schrodinger equations , 1994 .

[34]  Gulcin M. Muslu,et al.  Higher-order split-step Fourier schemes for the generalized nonlinear Schrödinger equation , 2005, Math. Comput. Simul..

[35]  K. Busch,et al.  Time-Domain Simulations of the Nonlinear Maxwell Equations Using Operator-Exponential Methods , 2009, IEEE Transactions on Antennas and Propagation.

[36]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[37]  Winfried Auzinger,et al.  Practical splitting methods for the adaptive integration of nonlinear evolution equations. Part I: Construction of optimized schemes and pairs of schemes , 2016, BIT Numerical Mathematics.

[38]  Mindaugas Radziunas,et al.  Numerical methods for a class of generalized nonlinear Schrödinger equations , 2015 .

[39]  M. Suzuki,et al.  General theory of fractal path integrals with applications to many‐body theories and statistical physics , 1991 .

[40]  Trevor Vanderwoerd,et al.  Numerical solutions of the time-dependent Schrödinger equation in two dimensions. , 2017, Physical review. E.

[41]  Fernando Casas,et al.  On the necessity of negative coefficients for operator splitting schemes of order higher than two , 2005 .