Bayesian model selection for the yeast GATA-factor network: A comparison of computational approaches
暂无分享,去创建一个
John Lygeros | Andreas Milias-Argeitis | Sean Summers | Riccardo Porreca | J. Lygeros | A. Milias-Argeitis | S. Summers | Riccardo Porreca
[1] D. Balding,et al. Approximate Bayesian computation in population genetics. , 2002, Genetics.
[2] Paul Marjoram,et al. Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[3] Arnaud Doucet,et al. An adaptive sequential Monte Carlo method for approximate Bayesian computation , 2011, Statistics and Computing.
[4] Mark M. Tanaka,et al. Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.
[5] Mark A. Girolami,et al. Bayesian ranking of biochemical system models , 2008, Bioinform..
[6] Radford M. Neal. Annealed importance sampling , 1998, Stat. Comput..
[7] J. Stelling,et al. Ensemble modeling for analysis of cell signaling dynamics , 2007, Nature Biotechnology.
[8] S. Chib,et al. Marginal Likelihood From the Metropolis–Hastings Output , 2001 .
[9] Edward I. George,et al. The Practical Implementation of Bayesian Model Selection , 2001 .
[10] Michael R. Green,et al. Dissecting the Regulatory Circuitry of a Eukaryotic Genome , 1998, Cell.
[11] Jean-Michel Marin,et al. ABC methods for model choice in Gibbs random fields , 2008 .
[12] E. O’Shea,et al. Quantification of protein half-lives in the budding yeast proteome , 2006, Proceedings of the National Academy of Sciences.
[13] E. Dubois,et al. The Yeast GATA Factor Gat1 Occupies a Central Position in Nitrogen Catabolite Repression-Sensitive Gene Activation , 2009, Molecular and Cellular Biology.
[14] C. Kaiser,et al. Nitrogen regulation in Saccharomyces cerevisiae. , 2002, Gene.
[15] P. Moral,et al. Sequential Monte Carlo samplers , 2002, cond-mat/0212648.
[16] Michael P. H. Stumpf,et al. Simulation-based model selection for dynamical systems in systems and population biology , 2009, Bioinform..
[17] David J. C. MacKay,et al. Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.
[18] E. O’Shea,et al. Global analysis of protein expression in yeast , 2003, Nature.