Adaptive unscented Gaussian likelihood approximation filter

This paper focuses on the update step of Bayesian nonlinear filtering. We first derive the unscented Gaussian likelihood approximation filter (UGLAF), which provides a Gaussian approximation to the likelihood by applying the unscented transformation to the inverse of the measurement function. The UGLAF approximation is accurate in the cases where the unscented Kalman filter (UKF) is not and the other way round. As a result, we propose the adaptive UGLAF (AUGLAF), which selects the best approximation to the posterior (UKF or UGLAF) based on the Kullback-Leibler divergence. This enables AUGLAF to outperform both the UKF and UGLAF.

[1]  M. Fiedler Bounds for the determinant of the sum of hermitian matrices , 1971 .

[2]  A. M. Walker On the Asymptotic Behaviour of Posterior Distributions , 1969 .

[3]  Ondrej Straka,et al.  Unscented Kalman Filter: Aspects and Adaptive Setting of Scaling Parameter , 2012, IEEE Transactions on Automatic Control.

[4]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[5]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[6]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[7]  Y. Ho,et al.  A Bayesian approach to problems in stochastic estimation and control , 1964 .

[8]  Ángel F. García-Fernández,et al.  Analysis of Kalman Filter Approximations for Nonlinear Measurements , 2013, IEEE Transactions on Signal Processing.

[9]  Ming Xin,et al.  High-degree cubature Kalman filter , 2013, Autom..

[10]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[11]  Robert J. Elliott,et al.  A Zakai equation derivation of the extended Kalman filter , 2010, Autom..

[12]  Simo Ali-Loytty,et al.  Gaussian Mixture Filter in Hybrid Navigation , 2007 .

[13]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[14]  F. W. Cathey,et al.  The iterated Kalman filter update as a Gauss-Newton method , 1993, IEEE Trans. Autom. Control..

[15]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[16]  Ángel F. García-Fernández,et al.  Mixture truncated unscented Kalman filtering , 2012, 2012 15th International Conference on Information Fusion.

[17]  Ángel F. García-Fernández,et al.  Truncated Unscented Kalman Filtering , 2012, IEEE Transactions on Signal Processing.