The orienteering problem with variable profits

This article introduces, models, and solves a generalization of the orienteering problem, called the the orienteering problem with variable profits (OPVP). The OPVP is defined on a complete undirected graph G = (V,E), with a depot at vertex 0. Every vertex i∈V \{0} has a profit pi to be collected, and an associated collection parameter αi∈[0, 1]. The vehicle may make a number of “passes,” collecting 100αi percent of the remaining profit at each pass. In an alternative model, the vehicle may spend a continuous amount of time at every vertex, collecting a percentage of the profit given by a function of the time spent. The objective is to determine a maximal profit tour for the vehicle, starting and ending at the depot, and not exceeding a travel time limit. © 2013 Wiley Periodicals, Inc. NETWORKS, 2013

[1]  Alain Hertz,et al.  Metaheuristics for the team orienteering problem , 2005, J. Heuristics.

[2]  Bruce L. Golden,et al.  A fast and effective heuristic for the orienteering problem , 1996 .

[3]  Dirk Van Oudheusden,et al.  A Path Relinking approach for the Team Orienteering Problem , 2010, Comput. Oper. Res..

[4]  I. Grossmann,et al.  An LP/NLP based branch and bound algorithm for convex MINLP optimization problems , 1992 .

[5]  Mark S. Daskin,et al.  A Maximum Expected Covering Location Model: Formulation, Properties and Heuristic Solution , 1983 .

[6]  Gilbert Laporte,et al.  The selective travelling salesman problem , 1990, Discret. Appl. Math..

[7]  Gilbert Laporte,et al.  The Attractive Traveling Salesman Problem , 2010, Eur. J. Oper. Res..

[8]  Alain Hertz,et al.  The capacitated team orienteering and profitable tour problems , 2007, J. Oper. Res. Soc..

[9]  Elise Miller-Hooks,et al.  A TABU search heuristic for the team orienteering problem , 2005, Comput. Oper. Res..

[10]  Zuren Feng,et al.  Ants can solve the team orienteering problem , 2008, Comput. Ind. Eng..

[11]  S. Morito,et al.  AN ALGORITHM FOR SINGLE CONSTRAINT MAXIMUM COLLECTION PROBLEM , 1988 .

[12]  Dirk Van Oudheusden,et al.  A PERSONALIZED TOURIST TRIP DESIGN ALGORITHM FOR MOBILE TOURIST GUIDES , 2008, Appl. Artif. Intell..

[13]  Michel Gendreau,et al.  An exact epsilon-constraint method for bi-objective combinatorial optimization problems: Application to the Traveling Salesman Problem with Profits , 2009, Eur. J. Oper. Res..

[14]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[15]  Dirk Van Oudheusden,et al.  The orienteering problem: A survey , 2011, Eur. J. Oper. Res..

[16]  Michel Gendreau,et al.  The Covering Tour Problem , 1997, Oper. Res..

[17]  Dirk Van Oudheusden,et al.  A guided local search metaheuristic for the team orienteering problem , 2009, Eur. J. Oper. Res..

[18]  R. Vohra,et al.  The Orienteering Problem , 1987 .

[19]  G. Laporte,et al.  A Branch-and-Cut Algorithm for the Undirected Selective Traveling Salesman Problem , 1998 .

[20]  Jean-Marie Proth,et al.  Production , Manufacturing and Logistics The concave cost supply problem , 2003 .

[21]  Michel Gendreau,et al.  A branch‐and‐cut algorithm for the undirected prize collecting traveling salesman problem , 2009, Networks.

[22]  Michel Gendreau,et al.  Traveling Salesman Problems with Profits , 2005, Transp. Sci..