Theoretical study of the defect distribution of trivalent cation impurities in MgO

Atomistic simulation techniques have been used to calculate defect energies for a range of trivalent cation impurities in MgO single crystals. From these, values of the association energies have been estimated for impurity-vacancy aggregates ranging in size from simple impurityvacancy monomers, containing one impurity ion, to large clusters containing up to 24 impurity ions. For the MgO:Cr3+ system, these energies have been incorporated in a mass-action analysis and predictions made of the dependence of the equilibrium distribution of defects on temperature and on the nominal concentration of the dopant.

[1]  R. Weeks,et al.  Distribution of Fe3+ in iron‐doped MgO single crystals , 1980 .

[2]  C. Catlow,et al.  Calculations of defect clustering in Fe1-xO , 1975 .

[3]  I. Faux,et al.  Shell and breathing shell model calculations for defect formation energies and volumes in magnesium oxide , 1976 .

[4]  T. Yager,et al.  The kinetics of clustering reactions in iron-doped MgO , 1981 .

[5]  F. A. Kröger,et al.  Relations between the Concentrations of Imperfections in Crystalline Solids , 1956 .

[6]  P. Jacobs,et al.  The contribution of vacancy defects to mass transport in alkali halides-an assessment using theoretical calculations of defect energies , 1979 .

[7]  W. D. Kingery,et al.  Ionic Conductivity and Magnesium Vacancy Mobility in Magnesium Oxide , 1980 .

[8]  P. Jacobs,et al.  A theoretical study of the aggregation of alkaline-earth cations in crystalline NaCl, KCl and KBr , 1981 .

[9]  E. Colbourn,et al.  The calculated defect structure of bulk and {001} surface cation dopants in MgO , 1982 .

[10]  R. Freer Self-diffusion and impurity diffusion in oxides , 1980 .

[11]  J. Corish,et al.  The Trapping of Vacancies by Impurity Vacancy Complexes in Alkali Halide Crystals , 1985, October 16.

[12]  W. Bitler,et al.  Diffusion of 51Cr in Cr-Doped MgO , 1980 .

[13]  W. Kingery,et al.  The equilibrium defect structure of iron-doped MgO in the range 600–1200° C , 1981 .

[14]  P. Jacobs,et al.  The thermodynamics of characteristic defect parameters , 1981 .

[15]  G. Peckham The phonon dispersion relation for magnesium oxide , 1967 .

[16]  L. Hobbs,et al.  Defect structure of Fe1-xO , 1983 .

[17]  P. Brun,et al.  Modes de relaxation électriques dans les cristaux ioniques de type NaCl dopés par des impuretés trivalentes , 1974 .

[18]  R. Stewart,et al.  Defect properties of ionic solids. II. Point defect energies based on modified electron-gas potentials , 1979 .

[19]  P. Jacobs,et al.  Ionic mobility in silver chloride , 1980 .

[20]  W. Hartley The Chemical Society , 1876, Nature.

[21]  A. Stoneham,et al.  Calculations of off-centre displacements of divalent substitutional ions in CaO, SrO and BaO from model potentials , 1981 .

[22]  G. Waychunas Mössbauer, EXAFS, and X-ray diffraction study of Fe3+ clusters in MgO:Fe and magnesiowüstite (Mg,Fe)1−xO-evidence for specific cluster geometries , 1983 .

[23]  P. Jacobs,et al.  Defect aggregation in anion-excess fluorites II. Clusters containing more than two impurity atoms , 1984 .

[24]  J. G. Carroll,et al.  Exchange interactions between Cr3+ ions in magnesium oxide. II. Electron spin resonance spectra , 1985 .

[25]  G. Samsonov,et al.  The Oxide Handbook , 1973 .

[26]  W. Gourdin,et al.  The defect structure of MgO containing trivalent cation solutes: shell model calculations , 1979 .

[27]  A. Glass Reactions between Vacancies and Impurities in Magnesium Oxide. I. Cr3+‐Ion Impurities , 1967 .

[28]  C. R. A. Catlow,et al.  Computer simulation of solids , 1982 .

[29]  M. Henry,et al.  Nature of the broadband luminescence center in MgO:Cr 3 + , 1976 .

[30]  J. M. Driear,et al.  The defect structure of MgO containing trivalent cation solutes: the oxidation-reduction behaviour of iron , 1979 .

[31]  C. R. A. Catlow,et al.  Defect aggregation in anion-excess fluorites. Dopant monomers and dimers , 1982 .