Faster Digital Quantum Simulation by Symmetry Protection

Simulating the dynamics of quantum systems is an important application of quantum computers and has seen a variety of implementations on current hardware. We show that by introducing quantum gates implementing unitary transformations generated by the symmetries of the system, one can induce destructive interference between the errors from different steps of the simulation, effectively giving faster quantum simulation by symmetry protection. We derive rigorous bounds on the error of a symmetry-protected simulation algorithm and identify conditions for optimal symmetry protection. In particular, when the symmetry transformations are chosen as powers of a unitary, the error of the algorithm is approximately projected to the so-called quantum Zeno subspaces. We prove a bound on this approximation error, exponentially improving a recent result of Burgarth, Facchi, Gramegna, and Pascazio. We apply our technique to the simulations of the XXZ Heisenberg interactions with local disorder and the Schwinger model in quantum field theory. For both systems, our algorithm can reduce the simulation error by several orders of magnitude over the unprotected simulation. Finally, we provide numerical evidence suggesting that our technique can also protect simulation against other types of coherent, temporally correlated errors, such as the $1/f$ noise commonly found in solid-state experiments.

[1]  Ryan Babbush,et al.  Low rank representations for quantum simulation of electronic structure , 2018, npj Quantum Information.

[2]  P. Zanardi Symmetrizing Evolutions , 1998, quant-ph/9809064.

[3]  Daniel A. Lidar,et al.  Rigorous bounds on the performance of a hybrid dynamical-decoupling quantum-computing scheme , 2008, 0803.4320.

[4]  H. Neven,et al.  Low-Depth Quantum Simulation of Materials , 2018 .

[5]  Jitse Niesen,et al.  Convergence of the Magnus Series , 2008, Found. Comput. Math..

[6]  Minh C. Tran,et al.  A Theory of Trotter Error , 2019, ArXiv.

[7]  R. Nandkishore,et al.  Many-Body Localization and Thermalization in Quantum Statistical Mechanics , 2014, 1404.0686.

[8]  Patrick J. Coles,et al.  Variational fast forwarding for quantum simulation beyond the coherence time , 2019, npj Quantum Information.

[9]  Nathan Wiebe,et al.  Well-conditioned multiproduct Hamiltonian simulation , 2019, 1907.11679.

[10]  J. Cirac,et al.  Quantum simulation of the Schwinger model: A study of feasibility , 2014, 1407.4995.

[11]  S. Lawrence,et al.  Suppressing Coherent Gauge Drift in Quantum Simulations , 2020, 2005.12688.

[12]  Morten Kjaergaard,et al.  Superconducting Qubits: Current State of Play , 2019, Annual Review of Condensed Matter Physics.

[13]  S. Blanes,et al.  The Magnus expansion and some of its applications , 2008, 0810.5488.

[14]  A. Tomiya,et al.  Digital Quantum Simulation of the Schwinger Model with Topological Term via Adiabatic State Preparation , 2020 .

[15]  Series expansions for the massive Schwinger model in Hamiltonian lattice theory , 1997, hep-lat/9701015.

[16]  P. Facchi,et al.  Phase transitions in Zn gauge models: Towards quantum simulations of the Schwinger-Weyl QED , 2017, Physical Review D.

[17]  Yuan Su,et al.  Faster quantum simulation by randomization , 2018, Quantum.

[18]  J. Kogut,et al.  Hamiltonian Formulation of Wilson's Lattice Gauge Theories , 1975 .

[19]  Peter Zoller,et al.  Quantum Simulation of a Lattice Schwinger Model in a Chain of Trapped Ions , 2013, 1306.2162.

[20]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[21]  P. Zoller,et al.  Constrained dynamics via the Zeno effect in quantum simulation: implementing non-Abelian lattice gauge theories with cold atoms. , 2013, Physical review letters.

[22]  Jesse R. Stryker,et al.  SU(2) non-Abelian gauge field theory in one dimension on digital quantum computers , 2019, Physical Review D.

[23]  Jesse R. Stryker Oracles for Gauss's law on digital quantum computers , 2018, Physical Review A.

[24]  John Preskill,et al.  Quantum Algorithms for Quantum Field Theories , 2011, Science.

[25]  S. Chin Multi-product splitting and Runge-Kutta-Nyström integrators , 2008, 0809.0914.

[26]  F. Casas,et al.  A general formula for the Magnus expansion in terms of iterated integrals of right-nested commutators , 2017, 1710.10851.

[27]  Andrew M. Childs,et al.  Simulating Hamiltonian dynamics with a truncated Taylor series. , 2014, Physical review letters.

[28]  Nathan Wiebe,et al.  Hamiltonian simulation using linear combinations of unitary operations , 2012, Quantum Inf. Comput..

[29]  A. Wieck,et al.  Charge noise and spin noise in a semiconductor quantum device , 2013, Nature Physics.

[30]  Seth Lloyd,et al.  Universal Control of Decoupled Quantum Systems , 1999 .

[31]  E. Solano,et al.  Quantum-classical computation of Schwinger model dynamics using quantum computers , 2018, Physical Review A.

[32]  E. Campbell Random Compiler for Fast Hamiltonian Simulation. , 2018, Physical review letters.

[33]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[34]  D. Burgarth,et al.  Generalized product formulas and quantum control , 2019, Journal of Physics A: Mathematical and Theoretical.

[35]  Minh C. Tran,et al.  Locality and Digital Quantum Simulation of Power-Law Interactions , 2018, Physical review. X.

[36]  F. Alet,et al.  Many-body localization edge in the random-field Heisenberg chain , 2014, 1411.0660.

[37]  D. Lidar,et al.  Unification of dynamical decoupling and the quantum Zeno effect (6 pages) , 2003, quant-ph/0303132.

[38]  I. Chuang,et al.  Hamiltonian Simulation by Qubitization , 2016, Quantum.

[39]  C. Monroe,et al.  Programmable quantum simulations of spin systems with trapped ions , 2019, Reviews of Modern Physics.

[40]  J. Cirac,et al.  Cold-atom quantum simulator for SU(2) Yang-Mills lattice gauge theory. , 2012, Physical review letters.

[41]  John Preskill,et al.  Combining dynamical decoupling with fault-tolerant quantum computation , 2009, 0911.3202.

[42]  M. Suzuki,et al.  General theory of fractal path integrals with applications to many‐body theories and statistical physics , 1991 .

[43]  Minh C. Tran,et al.  Theory of Trotter Error with Commutator Scaling , 2021 .

[44]  Jeongwan Haah,et al.  Quantum Algorithm for Simulating Real Time Evolution of Lattice Hamiltonians , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[45]  F. Verstraete,et al.  Matrix product states for gauge field theories. , 2013, Physical review letters.

[46]  S. Coleman More About the Massive Schwinger Model , 1976 .

[47]  T. Monz,et al.  Real-time dynamics of lattice gauge theories with a few-qubit quantum computer , 2016, Nature.

[48]  John Preskill,et al.  Quantum computation of scattering in scalar quantum field theories , 2011, Quantum Inf. Comput..

[49]  T. Byrnes,et al.  Density matrix renormalization group approach to the massive Schwinger model , 2002, hep-lat/0202014.

[50]  R. Somma,et al.  Hamiltonian simulation in the low-energy subspace , 2020, 2006.02660.

[51]  C. Monroe,et al.  Towards analog quantum simulations of lattice gauge theories with trapped ions , 2019, Physical Review Research.

[52]  Alán Aspuru-Guzik,et al.  Quantum computational chemistry , 2018, Reviews of Modern Physics.

[53]  David Poulin,et al.  The Trotter step size required for accurate quantum simulation of quantum chemistry , 2014, Quantum Inf. Comput..