Synthesis, structure, characterization and photocatalytic activity of Bi2Zr2O7 under solar radiation

Bi2Zr2O7 was synthesized via a facile solution combustion method. Two different fuels, urea and tartaric acid were used in the synthesis, which resulted in Bi2Zr2O7 crystals with different band gaps and surface areas. The structure has been determined by Rietveld refinement followed by the difference Fourier technique. The compound crystallizes in the space group Fmm. The photocatalytic degradation of two dyes was carried out under solar radiation. Bi2Zr2O7 prepared using urea as the fuel exhibits a higher photocatalytic activity than the compound prepared using tartaric acid and comparable activity to that of commercial Evonik P-25 TiO2. It is suggested that this is due to the oxygen vacancies occurring in the two cases, the urea based compound has an occupancy of 0.216, whereas the tartaric acid based synthesis shows disorder in the oxygen position amounting to a small number of oxygen vacancies.

[1]  T. N. Guru Row,et al.  Synthesis and structure of Bi2Ce2O7: a new compound exhibiting high solar photocatalytic activity. , 2012, Dalton Transactions.

[2]  Meili Guan,et al.  From hollow olive-shaped BiVO4 to n-p core-shell BiVO4@Bi2O3 microspheres: controlled synthesis and enhanced visible-light-responsive photocatalytic properties. , 2011, Inorganic chemistry.

[3]  C. Greaves,et al.  The structure and ionic conductivity of the fluorite-related isostructural materials Bi20Ca7NbO39.5, Bi10.75Ca4.375GaO22 and quenched Bi9ReO17 , 2010 .

[4]  J. Marco,et al.  The ionic conductivity and local environment of cations in Bi9ReO17 , 2010 .

[5]  M. S. Hegde,et al.  Noble metal ionic catalysts. , 2009, Accounts of chemical research.

[6]  E. Wachsman,et al.  A higher conductivity Bi2O3-based electrolyte , 2002 .

[7]  A. J. Bush,et al.  Stabilisation and characterisation of a new βIII-phase in Zr-doped Bi2O3 , 2001 .

[8]  Fritz Aldinger,et al.  Bismuth based oxide electrolytes— structure and ionic conductivity , 1999 .

[9]  A. Sleight,et al.  New phases in the ZrO2–Bi2O3 and HfO2–Bi2O3 systems , 1998 .

[10]  C. Catlow,et al.  The structural properties of the oxygen conducting δ phase of Bi2O3 , 1983 .

[11]  H. Iwahara,et al.  Formation of high oxide ion conductive phases in the sintered oxides of the system Bi2O3Ln2O3 (Ln = LaYb) , 1981 .

[12]  H. A. Harwig,et al.  The polymorphism of bismuth sesquioxide , 1979 .

[13]  Takehiko Takahashi,et al.  Oxide ion conductors based on bismuthsesquioxide , 1978 .

[14]  H. A. Harwig,et al.  Electrical properties of the α, β, γ, and δ phases of bismuth sesquioxide , 1978 .

[15]  H. A. Harwig On the Structure of Bismuthsesquioxide: The α, β, γ, and δ-phase , 1978 .

[16]  H. A. Harwig,et al.  Phase Relations in Bismuthsesquioxide , 1978 .

[17]  F. Hund Fluoritmischphasen der Dioxide von Uran, Thorium, Cer und Zirkonium mit Wismutoxid , 1964 .

[18]  G. Gattow,et al.  Über Wismutoxide. VI. Überein Wismut (III)‐oxid mit höherem Sauerstoffgehalt (β‐Modifikation) , 1964 .

[19]  G. Gattow,et al.  Über Wismutoxide. III. Die Kristallstruktur der Hochtemperaturmodifikation von Wismut(III)‐oxid (δ‐Bi2O3) , 1962 .

[20]  E. Rittner,et al.  Polymorphism of Bismuth Trioxide1 , 1943 .