Lattice effect algebras densely embeddable into complete ones
暂无分享,去创建一个
[1] MacNeille Completions of D-Posets and Effect Algebras , 2000 .
[2] Frantisek Kopka. Compatibility in D-posets , 1995 .
[4] Z. Riecanová,et al. Subalgebras, Intervals, and Central Elements of Generalized Effect Algebras , 1999 .
[5] Stanley Gudder,et al. S-Dominating Effect Algebras , 1998 .
[6] Zdenka Riečanová. Subdirect Decompositions of Lattice Effect Algebras , 2003 .
[7] Zdenka Riečanová. DISTRIBUTIVE ATOMIC EFFECT ALGEBRAS , 2003 .
[8] G. Kalmbach. On Orthomodular Lattices , 1990 .
[9] Zdenka Riečanová,et al. Generalization of Blocks for D-Lattices and Lattice-Ordered Effect Algebras , 2000 .
[10] C. Chang,et al. Algebraic analysis of many valued logics , 1958 .
[11] Zdenka Riečanová. ORTHOGONAL SETS IN EFFECT ALGEBRAS , 2001 .
[12] Martin Kalina. On central atoms of Archimedean atomic lattice effect algebras , 2010, Kybernetika.
[13] D. Foulis,et al. Effect algebras and unsharp quantum logics , 1994 .
[14] Zdenka Riečanová. Smearings of States Defined on Sharp Elements Onto Effect Algebras , 2002 .
[15] Zdenka Riecanová. Pseudocomplemented lattice effect algebras and existence of states , 2009, Inf. Sci..
[16] Paolo Vitolo. Compatibility and central elements in pseudo-effect algebras , 2010, Kybernetika.
[17] Jürgen Schmidt,et al. Zur Kennzeichnung der Dedekind-MacNeilleschen HÜlle einer geordneten HÜlle , 1956 .
[18] Zdenka Riečanová. ARCHIMEDEAN AND BLOCK-FINITE LATTICE EFFECT ALGEBRAS , 2000 .