Lattice effect algebras densely embeddable into complete ones

An effect algebraic partial binary operation ⊕ defined on the underlying set E uniquely introduces partial order, but not conversely. We show that if on a MacNeille completion E of E there exists an effect algebraic partial binary operation ⊕ then ⊕ need not be an extension of ⊕. Moreover, for an Archimedean atomic lattice effect algebra E we give a necessary and sufficient condition for that ⊕ existing on E is an extension of ⊕ defined on E. Further we show that such ⊕ extending ⊕ exists at most one.

[1]  MacNeille Completions of D-Posets and Effect Algebras , 2000 .

[2]  Frantisek Kopka Compatibility in D-posets , 1995 .

[4]  Z. Riecanová,et al.  Subalgebras, Intervals, and Central Elements of Generalized Effect Algebras , 1999 .

[5]  Stanley Gudder,et al.  S-Dominating Effect Algebras , 1998 .

[6]  Zdenka Riečanová Subdirect Decompositions of Lattice Effect Algebras , 2003 .

[7]  Zdenka Riečanová DISTRIBUTIVE ATOMIC EFFECT ALGEBRAS , 2003 .

[8]  G. Kalmbach On Orthomodular Lattices , 1990 .

[9]  Zdenka Riečanová,et al.  Generalization of Blocks for D-Lattices and Lattice-Ordered Effect Algebras , 2000 .

[10]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[11]  Zdenka Riečanová ORTHOGONAL SETS IN EFFECT ALGEBRAS , 2001 .

[12]  Martin Kalina On central atoms of Archimedean atomic lattice effect algebras , 2010, Kybernetika.

[13]  D. Foulis,et al.  Effect algebras and unsharp quantum logics , 1994 .

[14]  Zdenka Riečanová Smearings of States Defined on Sharp Elements Onto Effect Algebras , 2002 .

[15]  Zdenka Riecanová Pseudocomplemented lattice effect algebras and existence of states , 2009, Inf. Sci..

[16]  Paolo Vitolo Compatibility and central elements in pseudo-effect algebras , 2010, Kybernetika.

[17]  Jürgen Schmidt,et al.  Zur Kennzeichnung der Dedekind-MacNeilleschen HÜlle einer geordneten HÜlle , 1956 .

[18]  Zdenka Riečanová ARCHIMEDEAN AND BLOCK-FINITE LATTICE EFFECT ALGEBRAS , 2000 .