Enumerating Minimal Subset Feedback Vertex Sets

The Subset Feedback Vertex Set problem takes as input a pair (G,S), where G=(V,E) is a graph with weights on its vertices, and S⊆V. The task is to find a set of vertices of total minimum weight to be removed from G, such that in the remaining graph no cycle contains a vertex of S. We show that this problem can be solved in time O(1.8638n), where n=|V|. This is a consequence of the main result of this paper, namely that all minimal subset feedback vertex sets of a graph can be enumerated in time O(1.8638n).

[1]  Michal Pilipczuk,et al.  Solving Connectivity Problems Parameterized by Treewidth in Single Exponential Time , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[2]  Joseph Naor,et al.  An 8-approximation algorithm for the subset feedback vertex set problem , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[3]  Fabrizio Grandoni,et al.  A measure & conquer approach for the analysis of exact algorithms , 2009, JACM.

[4]  Joseph Naor,et al.  An 8-Approximation Algorithm for the Subset Feedback Vertex Set Problem , 2000, SIAM J. Comput..

[5]  Jianer Chen,et al.  On Feedback Vertex Set: New Measure and New Structures , 2010, Algorithmica.

[6]  Benno Schwikowski,et al.  On enumerating all minimal solutions of feedback problems , 2002, Discret. Appl. Math..

[7]  Polish Ministry Subset feedback vertex set is fixed-parameter tractable , 2011 .

[8]  Jeremy P. Spinrad,et al.  Efficient graph representations , 2003, Fields Institute monographs.

[9]  Fedor V. Fomin,et al.  Enumerating Minimal Subset Feedback Vertex Sets , 2011, WADS.

[10]  Stéphan Thomassé,et al.  A 4k2 kernel for feedback vertex set , 2010, TALG.

[11]  Jianer Chen,et al.  Improved algorithms for feedback vertex set problems , 2008, J. Comput. Syst. Sci..

[12]  Saket Saurabh,et al.  Faster fixed parameter tractable algorithms for finding feedback vertex sets , 2006, TALG.

[13]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[14]  Mihalis Yannakakis,et al.  Multiway cuts in node weighted graphs , 2004, J. Algorithms.

[15]  Fedor V. Fomin,et al.  On the Minimum Feedback Vertex Set Problem: Exact and Enumeration Algorithms , 2008, Algorithmica.

[16]  Igor Razgon Exact Computation of Maximum Induced Forest , 2006, SWAT.

[17]  Fedor V. Fomin,et al.  Exact exponential algorithms , 2013, CACM.

[18]  Jean Fonlupt,et al.  The complexity of generalized clique covering , 1989, Discret. Appl. Math..

[19]  Fedor V. Fomin,et al.  Finding Induced Subgraphs via Minimal Triangulations , 2009, STACS.