Lattice-valued preordered sets as lattice-valued topological systems

[1]  Dona Papert,et al.  Sur les treillis des ouverts et les paratopologies , 1958 .

[2]  S. Lane Categories for the Working Mathematician , 1971 .

[3]  John R. Isbell,et al.  Atomless Parts of Spaces. , 1972 .

[4]  F. William Lawvere,et al.  Metric spaces, generalized logic, and closed categories , 1973 .

[5]  Bernhard Banaschewski,et al.  Tensor Products and Bimorphisms , 1976, Canadian Mathematical Bulletin.

[6]  Rudolf-E. Hoffmann Essentially complete TO-spaces , 1979 .

[7]  B. Hutton,et al.  Products of fuzzy topological spaces , 1980 .

[8]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[9]  S. Vickers Topology via Logic , 1989 .

[10]  lawa Kanas,et al.  Metric Spaces , 2020, An Introduction to Functional Analysis.

[11]  K. I. Rosenthal Quantales and their applications , 1990 .

[12]  Jirí Adámek,et al.  Abstract and Concrete Categories - The Joy of Cats , 1990 .

[13]  Stephen E. Rodabaugh,et al.  Categorical Frameworks for Stone Representation Theories , 1992 .

[14]  H. Kunzi Complete quasi-pseudo-metric spaces , 1992 .

[15]  Marcel Erné,et al.  A Primer on Galois Connections , 1993 .

[16]  Alexander P. Sostak,et al.  Axiomatic Foundations Of Fixed-Basis Fuzzy Topology , 1999 .

[17]  Stephen E. Rodabaugh,et al.  Separation Axioms: Representation Theorems, Compactness, and Compactifications , 1999 .

[18]  Stephen E. Rodabaugh,et al.  Powerset Operator Foundations For Poslat Fuzzy Set Theories And Topologies , 1999 .

[19]  Stephen E. Rodabaugh,et al.  Categorical Foundations of Variable-Basis Fuzzy Topology , 1999 .

[20]  U. Höhle Many Valued Topology and its Applications , 2001 .

[21]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[22]  Walter Tholen,et al.  Metric, topology and multicategory—a common approach , 2003 .

[23]  Dirk Hofmann,et al.  One Setting for All: Metric, Topology, Uniformity, Approach Structure , 2004, Appl. Categorical Struct..

[24]  Radim Belohlávek,et al.  Concept lattices and order in fuzzy logic , 2004, Ann. Pure Appl. Log..

[25]  Dexue Zhang,et al.  Fuzzy preorder and fuzzy topology , 2006, Fuzzy Sets Syst..

[26]  H. Ono,et al.  Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Volume 151 , 2007 .

[27]  Peter Jipsen,et al.  Residuated lattices: An algebraic glimpse at sub-structural logics , 2007 .

[28]  Gianni Dal Maso Ennio De Giorgi , 2007 .

[29]  Stephen Ernest Rodabaugh,et al.  Relationship of Algebraic Theories to Powerset Theories and Fuzzy Topological Theories for Lattice-Valued Mathematics , 2007, Int. J. Math. Math. Sci..

[30]  Sergey A. Solovyov,et al.  Sobriety and spatiality in varieties of algebras , 2008, Fuzzy Sets Syst..

[31]  Alexander Arhangel’skii,et al.  Topological Groups and Related Structures , 2008 .

[32]  Jeffrey T. Denniston,et al.  Functorial relationships between lattice-valued topology and topological systems , 2009 .

[33]  Sergey A. Solovyov,et al.  Variable-basis topological systems versus variable-basis topological spaces , 2010, Soft Comput..

[34]  Cosimo Guido,et al.  Fuzzy points and attachment , 2010, Fuzzy Sets Syst..

[35]  Alexander Katovsky,et al.  Category Theory , 2010, Arch. Formal Proofs.

[36]  Wei Yao,et al.  An approach to fuzzy frames via fuzzy posets , 2011, Fuzzy Sets Syst..

[37]  Tomasz Kubiak,et al.  A non-commutative and non-idempotent theory of quantale sets , 2011, Fuzzy Sets Syst..

[38]  Dirk Hofmann,et al.  Lax algebra meets topology , 2012 .

[39]  Austin Melton,et al.  Interweaving algebra and topology: Lattice-valued topological systems , 2012, Fuzzy Sets Syst..

[40]  Ulrich Höhle,et al.  Fuzzy presubsets as non-idempotent and non-commutative classifications of subalgebras , 2012, Fuzzy Sets Syst..

[41]  Sergey A. Solovyov,et al.  Categorical foundations of variety-based topology and topological systems , 2012, Fuzzy Sets Syst..

[42]  Iraide Mardones-Pérez,et al.  A representation theorem for fuzzy pseudometrics , 2012, Fuzzy Sets Syst..

[43]  S. Solovyov,et al.  Dual attachment pairs in categorically-algebraic topology , 2013 .

[44]  Austin Melton,et al.  Enriched categories and many-valued preorders: Categorical, semantical, and topological perspectives , 2014, Fuzzy Sets Syst..

[45]  E. Riehl Basic concepts of enriched category theory , 2014 .