Lattice-valued preordered sets as lattice-valued topological systems
暂无分享,去创建一个
Austin Melton | Sergey A. Solovyov | Jeffrey T. Denniston | Stephen Ernest Rodabaugh | A. Melton | S. E. Rodabaugh | S. Solovyov
[1] Dona Papert,et al. Sur les treillis des ouverts et les paratopologies , 1958 .
[2] S. Lane. Categories for the Working Mathematician , 1971 .
[3] John R. Isbell,et al. Atomless Parts of Spaces. , 1972 .
[4] F. William Lawvere,et al. Metric spaces, generalized logic, and closed categories , 1973 .
[5] Bernhard Banaschewski,et al. Tensor Products and Bimorphisms , 1976, Canadian Mathematical Bulletin.
[6] Rudolf-E. Hoffmann. Essentially complete TO-spaces , 1979 .
[7] B. Hutton,et al. Products of fuzzy topological spaces , 1980 .
[8] Stanley Burris,et al. A course in universal algebra , 1981, Graduate texts in mathematics.
[9] S. Vickers. Topology via Logic , 1989 .
[10] lawa Kanas,et al. Metric Spaces , 2020, An Introduction to Functional Analysis.
[11] K. I. Rosenthal. Quantales and their applications , 1990 .
[12] Jirí Adámek,et al. Abstract and Concrete Categories - The Joy of Cats , 1990 .
[13] Stephen E. Rodabaugh,et al. Categorical Frameworks for Stone Representation Theories , 1992 .
[14] H. Kunzi. Complete quasi-pseudo-metric spaces , 1992 .
[15] Marcel Erné,et al. A Primer on Galois Connections , 1993 .
[16] Alexander P. Sostak,et al. Axiomatic Foundations Of Fixed-Basis Fuzzy Topology , 1999 .
[17] Stephen E. Rodabaugh,et al. Separation Axioms: Representation Theorems, Compactness, and Compactifications , 1999 .
[18] Stephen E. Rodabaugh,et al. Powerset Operator Foundations For Poslat Fuzzy Set Theories And Topologies , 1999 .
[19] Stephen E. Rodabaugh,et al. Categorical Foundations of Variable-Basis Fuzzy Topology , 1999 .
[20] U. Höhle. Many Valued Topology and its Applications , 2001 .
[21] K. Hofmann,et al. Continuous Lattices and Domains , 2003 .
[22] Walter Tholen,et al. Metric, topology and multicategory—a common approach , 2003 .
[23] Dirk Hofmann,et al. One Setting for All: Metric, Topology, Uniformity, Approach Structure , 2004, Appl. Categorical Struct..
[24] Radim Belohlávek,et al. Concept lattices and order in fuzzy logic , 2004, Ann. Pure Appl. Log..
[25] Dexue Zhang,et al. Fuzzy preorder and fuzzy topology , 2006, Fuzzy Sets Syst..
[26] H. Ono,et al. Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Volume 151 , 2007 .
[27] Peter Jipsen,et al. Residuated lattices: An algebraic glimpse at sub-structural logics , 2007 .
[28] Gianni Dal Maso. Ennio De Giorgi , 2007 .
[29] Stephen Ernest Rodabaugh,et al. Relationship of Algebraic Theories to Powerset Theories and Fuzzy Topological Theories for Lattice-Valued Mathematics , 2007, Int. J. Math. Math. Sci..
[30] Sergey A. Solovyov,et al. Sobriety and spatiality in varieties of algebras , 2008, Fuzzy Sets Syst..
[31] Alexander Arhangel’skii,et al. Topological Groups and Related Structures , 2008 .
[32] Jeffrey T. Denniston,et al. Functorial relationships between lattice-valued topology and topological systems , 2009 .
[33] Sergey A. Solovyov,et al. Variable-basis topological systems versus variable-basis topological spaces , 2010, Soft Comput..
[34] Cosimo Guido,et al. Fuzzy points and attachment , 2010, Fuzzy Sets Syst..
[35] Alexander Katovsky,et al. Category Theory , 2010, Arch. Formal Proofs.
[36] Wei Yao,et al. An approach to fuzzy frames via fuzzy posets , 2011, Fuzzy Sets Syst..
[37] Tomasz Kubiak,et al. A non-commutative and non-idempotent theory of quantale sets , 2011, Fuzzy Sets Syst..
[38] Dirk Hofmann,et al. Lax algebra meets topology , 2012 .
[39] Austin Melton,et al. Interweaving algebra and topology: Lattice-valued topological systems , 2012, Fuzzy Sets Syst..
[40] Ulrich Höhle,et al. Fuzzy presubsets as non-idempotent and non-commutative classifications of subalgebras , 2012, Fuzzy Sets Syst..
[41] Sergey A. Solovyov,et al. Categorical foundations of variety-based topology and topological systems , 2012, Fuzzy Sets Syst..
[42] Iraide Mardones-Pérez,et al. A representation theorem for fuzzy pseudometrics , 2012, Fuzzy Sets Syst..
[43] S. Solovyov,et al. Dual attachment pairs in categorically-algebraic topology , 2013 .
[44] Austin Melton,et al. Enriched categories and many-valued preorders: Categorical, semantical, and topological perspectives , 2014, Fuzzy Sets Syst..
[45] E. Riehl. Basic concepts of enriched category theory , 2014 .