Intra- and inter-class spectral variability of tropical tree species at La Selva, Costa Rica: Implications for species identification using HYDICE imagery

Hyperspectral remote sensing provides great potential to monitor and study biodiversity of tropical forests through species identification and mapping. In this study, five species were selected to examine crown-level spectral variation within and between species using HYperspectral Digital Collection Experiment (HYDICE) data collected over La Selva, Costa Rica. Spectral angle was used to evaluate the spectral variation in reflectance, first derivative and wavelet-transformed spectral domains. Results indicated that intra-crown spectral variation does not always follow a normal distribution and can vary from crown to crown, therefore presenting challenges to statistically define the spectral variation within species using conventional classification approaches that assume normal distributions. Although derivative analysis has been used extensively in hyperspectral remote sensing of vegetation, our results suggest that it might not be optimal for species identification in tropical forestry using airborne hyperspectral data. The wavelet-transformed spectra, however, were useful for the identification of tree species. The wavelet coefficients at coarse spectral scales and the wavelet energy feature are more capable of reducing variation within crowns/species and capturing spectral differences between species. The implications of this examination of intra- and inter-specific variability at crown-level were: (1) the wavelet transform is a robust tool for the identification of tree species using hyperspectral data because it can provide a systematic view of the spectra at multiple scales; and (2) it may be impractical to identify every species using only hyperspectral data, given that spectral similarity may exist between species and that within-crown/species variability may be influenced by many factors.

[1]  J. Brock,et al.  Prospects for quantifying structure, floristic composition and species richness of tropical forests , 2004 .

[2]  G. Foody,et al.  Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions , 2003 .

[3]  P. Gong,et al.  Conifer species recognition: Effects of data transformation , 2001 .

[4]  Paul Scheunders,et al.  Generic wavelet-based hyperspectral classification applied to vegetation stress detection , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[5]  J. Schepers,et al.  Transmittance and reflectance measurements of corn leaves from plants with different nitrogen and water supply , 1996 .

[6]  J. Terborgh,et al.  Why Do Some Tropical Forests Have So Many Species of Trees? , 2004 .

[7]  D. Roberts,et al.  Sources of error in accuracy assessment of thematic land-cover maps in the Brazilian Amazon , 2004 .

[8]  P. Crill,et al.  Spectral reflectance measurements of boreal wetland and forest mosses , 1997 .

[9]  D. Roberts,et al.  Large area mapping of land‐cover change in Rondônia using multitemporal spectral mixture analysis and decision tree classifiers , 2002 .

[10]  G. MallatS. A Theory for Multiresolution Signal Decomposition , 1989 .

[11]  S. Ustin,et al.  Critique of stepwise multiple linear regression for the extraction of leaf biochemistry information from leaf reflectance data , 1996 .

[12]  P. Curran Remote sensing of foliar chemistry , 1989 .

[13]  Giles M. Foody,et al.  Estimation of tropical forest extent and regenerative stage using remotely sensed data , 1994 .

[14]  Jiang Li,et al.  Automated detection of subpixel hyperspectral targets with adaptive multichannel discrete wavelet transform , 2002, IEEE Trans. Geosci. Remote. Sens..

[15]  Stephen P. Hubbell,et al.  Tree Dispersion, Abundance, and Diversity in a Tropical Dry Forest , 1979, Science.

[16]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[17]  C. Elvidge,et al.  Comparison of broad-band and narrow-band red and near-infrared vegetation indices , 1995 .

[18]  Jiang Li,et al.  Wavelets for computationally efficient hyperspectral derivative analysis , 2001, IEEE Trans. Geosci. Remote. Sens..

[19]  G. Carter Reflectance Wavebands and Indices for Remote Estimation of Photosynthesis and Stomatal Conductance in Pine Canopies , 1998 .

[20]  G. A. Blackburn,et al.  Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves , 1998 .

[21]  L. Bruce,et al.  Analysis of the effects of cover crop residue on hyperspectral reflectance discrimination of soybean and weeds via Haar transform , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[22]  Tim J. Malthus,et al.  High-spectral resolution data for monitoring Scots pine ( Pinus sylvestris L.) regeneration , 1998 .

[23]  S. Hubbell,et al.  A unified theory of biogeography and relative species abundance and its application to tropical rain forests and coral reefs , 1997, Coral Reefs.

[24]  M. Cochrane Using vegetation reflectance variability for species level classification of hyperspectral data , 2000 .

[25]  Donald B. Percival,et al.  The discrete wavelet transform and the scale analysis of the surface properties of sea ice , 1996, IEEE Trans. Geosci. Remote. Sens..

[26]  Joan E. Luther,et al.  Development of an Index of Balsam Fir Vigor by Foliar Spectral Reflectance , 1999 .

[27]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  L. Bruce,et al.  Wavelet analysis of hyperspectral reflectance data for detecting pitted morningglory (Ipomoea lacunosa) in soybean (Glycine max) , 2003 .

[29]  R. Clark,et al.  Spectroscopic Determination of Leaf Biochemistry Using Band-Depth Analysis of Absorption Features and Stepwise Multiple Linear Regression , 1999 .

[30]  Ruiliang Pu,et al.  Conifer species recognition: An exploratory analysis of in situ hyperspectral data , 1997 .

[31]  K. O. Niemann,et al.  Remote sensing of forest stand age using airborne spectrometer data , 1995 .

[32]  J. C. Price How unique are spectral signatures , 1994 .

[33]  Robert C. Harriss,et al.  Deforestation in Costa Rica: A Quantitative Analysis Using Remote Sensing Imagery1 , 2001 .

[34]  S. Dobrowski,et al.  Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects , 2003 .

[35]  Rebecca A. Efroymson,et al.  Analysis of Effects , 2000 .

[36]  P. Thenkabail,et al.  Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics , 2000 .

[37]  Mary E. Martin,et al.  HIGH SPECTRAL RESOLUTION REMOTE SENSING OF FOREST CANOPY LIGNIN, NITROGEN, AND ECOSYSTEM PROCESSES , 1997 .

[38]  Sinthop Kaewpijit,et al.  Automatic reduction of hyperspectral imagery using wavelet spectral analysis , 2003, IEEE Trans. Geosci. Remote. Sens..

[39]  D. H. Janzend,et al.  Species composition , similarity and diversity in three successional stages of a seasonally dry tropical forest , 2004 .

[40]  A. Goetz,et al.  Software for the derivation of scaled surface reflectances from AVIRIS data , 1992 .

[41]  G. Daily,et al.  COUNTRYSIDE BIOGEOGRAPHY: USE OF HUMAN-DOMINATED HABITATS BY THE AVIFAUNA OF SOUTHERN COSTA RICA , 2001 .

[42]  Jiang Li,et al.  Correction to "Wavelet-Based Feature Extraction for Improved Endmember Abundance Estimation in Linear Unmixing of Hyperspectral Signals" , 2004 .

[43]  F. M. Danson,et al.  Advances in environmental remote sensing , 1995 .

[44]  D. Roberts,et al.  Spectral and Structural Measures of Northwest Forest Vegetation at Leaf to Landscape Scales , 2004, Ecosystems.

[45]  Jiang Li,et al.  Automated detection of Pueraria montana (kudzu) through Haar analysis of hyperspectral reflectance data , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[46]  D. Roberts,et al.  Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales , 2005 .

[47]  F. Achard,et al.  Determination of Deforestation Rates of the World's Humid Tropical Forests , 2002, Science.

[48]  G. A. Blackburn,et al.  Towards the Remote Sensing of Matorral Vegetation Physiology : Relationships between Spectral Reflectance, Pigment, and Biophysical Characteristics of Semiarid Bushland Canopies. , 1999 .

[49]  G. Asner Biophysical and Biochemical Sources of Variability in Canopy Reflectance , 1998 .

[50]  Alexander F. H. Goetz,et al.  High Spectral Resolution Remote Sensing Of The Land , 1984, Other Conferences.

[51]  Richard G. Oderwald,et al.  Spectral Separability among Six Southern Tree Species , 2000 .

[52]  Benoit Rivard,et al.  Remote Sensing Research Priorities in Tropical Dry Forest Environments , 2003 .

[53]  J. A. Robinson,et al.  On Automatic Reduction , 1964 .

[54]  G. A. Sanchez-Azofeifa,et al.  Canopy observations on the hyperspectral properties of a community of tropical dry forest lianas and their host trees , 2006 .

[55]  J. C. Price Variability of high-resolution crop reflectance spectra , 1992 .

[56]  Mary E. Martin,et al.  Determining Forest Species Composition Using High Spectral Resolution Remote Sensing Data , 1998 .

[57]  D. H. Card,et al.  Remote sensing of forest canopy and leaf biochemical contents , 1988 .

[58]  S. Hubbell,et al.  The unified neutral theory of biodiversity and biogeography at age ten. , 2011, Trends in ecology & evolution.

[59]  S. Ustin,et al.  Estimating leaf biochemistry using the PROSPECT leaf optical properties model , 1996 .

[60]  Jean-Philippe Gastellu-Etchegorry,et al.  Forest canopy chemistry with high spectral resolution remote sensing , 1996 .

[61]  L. Johnson,et al.  Spectrometric Estimation of Total Nitrogen Concentration in Douglas-Fir Foliage , 1996 .

[62]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[63]  P. Coley,et al.  Causes and Consequences of Epiphyll Colonization , 1996 .

[64]  Terry Caelli,et al.  Discrimination of lianas and trees with leaf-level hyperspectral data , 2004 .

[65]  M. Ashton,et al.  Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications , 2004 .

[66]  Prasad S. Thenkabail,et al.  Evaluation of Narrowband and Broadband Vegetation Indices for Determining Optimal Hyperspectral Wavebands for Agricultural Crop Characterization , 2002 .

[67]  Robert W. Basedow,et al.  HYDICE system: implementation and performance , 1995, Defense, Security, and Sensing.

[68]  D. Clark,et al.  Edaphic variation and the mesoscale distribution of tree species in a neotropical rain forest , 1998 .

[69]  H. Gausman,et al.  Plant Leaf Optical Properties in Visible and Near-Infrared Light , 1985 .

[70]  Fabrizio Argenti,et al.  Hyperspectral data analysis by mixed transforms , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[71]  Lori M. Bruce,et al.  Automated detection of subpixel hyperspectral targets with continuous and discrete wavelet transforms , 2001, IEEE Trans. Geosci. Remote. Sens..

[72]  John R. Miller,et al.  Correlating leaf area index of Ponderosa pine with hyperspectral casi data , 1992 .

[73]  John P. Kerekes,et al.  Analysis of HYDICE noise characteristics and their impact on subpixel object detection , 1999, Optics & Photonics.

[74]  Prasad S. Thenkabail,et al.  Optimal hyperspectral narrowbands for discriminating agricultural crops , 2001 .

[75]  L. Holdridge,et al.  Forest environments in tropical life zones: a pilot study. , 1971 .

[76]  Gerhard Zotz,et al.  Rainforest air-conditioning: the moderating influence of epiphytes on the microclimate in tropical tree crowns , 2002, International journal of biometeorology.

[77]  D. Roberts,et al.  Spectral changes with leaf aging in Amazon caatinga , 1998, Trees.

[78]  T. Spies,et al.  Characterizing canopy gap structure in forests using wavelet analysis , 1992 .

[79]  David L. Peterson,et al.  An evaluation of imaging spectrometry for estimating forest canopy chemistry , 1989 .

[80]  Compton J. Tucker,et al.  Tropical deforestation in the Bolivian Amazon , 2000, SPIE Defense + Commercial Sensing.

[81]  Fuan Tsai,et al.  Derivative Analysis of Hyperspectral Data , 1998 .

[82]  P. Gong,et al.  Wavelet transform applied to EO-1 hyperspectral data for forest LAI and crown closure mapping , 2004 .