Friction and wear behavior of NiAl–10 wt%Ti3SiC2 composites

[1]  Wenzheng Zhai,et al.  Influence of Ti3SiC2 content on tribological properties of NiAl matrix self-lubricating composites , 2013 .

[2]  Zhiwei Zhu,et al.  Facile synthesis of Ti3SiC2 powder by high energy ball-milling and vacuum pressureless heat-treating process from Ti–TiC–SiC–Al powder mixtures , 2012 .

[3]  Wei-min Liu,et al.  Tribological behavior of NiAl matrix composites with addition of oxides at high temperatures , 2012 .

[4]  Jiansong Zhou,et al.  Preparation, microstructure and tribological behavior of laser cladding NiAl intermetallic compound coatings , 2012 .

[5]  Shemin Zhu,et al.  Microstructure and mechanical properties of in situ synthesized (TiB2 + TiC)/Ti3SiC2 composites , 2012 .

[6]  D. Xiong,et al.  Elevated temperature tribological behavior of Ni based composites containing nano-silver and hBN , 2010 .

[7]  B. S. Murty,et al.  High temperature wear behavior of Al-4Cu-TiB2 in situ composites , 2010 .

[8]  T. Sun,et al.  Study on dry sliding friction and wear properties of Ti2AlN/TiAl composite , 2010 .

[9]  C. Bindal,et al.  Tribological properties of NiAl produced by pressure-assisted combustion synthesis , 2008 .

[10]  Farid Akhtar,et al.  Microstructure evolution and wear properties of in situ synthesized TiB2 and TiC reinforced steel matrix composites , 2008 .

[11]  M. Barsoum,et al.  Ambient and 550 °C tribological behavior of select MAX phases against Ni-based superalloys , 2008 .

[12]  L. J. Yang The effect of nominal specimen contact area on the wear coefficient of A6061 aluminium matrix composite reinforced with alumina particles , 2007 .

[13]  Z. Huang,et al.  Tribological behaviors of bulk Ti3SiC2 and influences of TiC impurities , 2006 .

[14]  S. Sasaki,et al.  High-temperature tribological properties of Al2O3, Ni–20 mass% Cr and NiAl spark-plasma-sintered composites containing BaF2–CaF2 phase , 2005 .

[15]  Yiwang Chen,et al.  Microstructure of laser clad TiC/NiAl-Ni3(Al, Ti, C) wear-resistant intermetallic matrix composite coatings , 2003 .

[16]  B. Cai,et al.  Ti3SiC2—a self-lubricating ceramic , 2002 .

[17]  Seetharama C. Deevi,et al.  Emerging applications of intermetallics , 2000 .

[18]  P. Blau,et al.  Effect of grain size on friction and wear behavior of Ti3SiC2 , 2000 .

[19]  F. Stott The role of oxidation in the wear of alloys , 1998 .

[20]  D. E. Alman,et al.  Abrasive wear of intermetallic-based alloys and composites , 1997 .

[21]  F. Kennedy,et al.  Dry sliding wear of NiAl , 1996 .

[22]  C. Liu Recent advances in ordered intermetallics , 1994 .

[23]  D. Miracle Overview No. 104 The physical and mechanical properties of NiAl , 1993 .

[24]  R. Noebe,et al.  Physical and mechanical properties of the B2 compound NiAl , 1993 .

[25]  I. Baker,et al.  The effect of grain size on the yield strength of FeAl and NiAl , 1991 .

[26]  I. Baker,et al.  The effect of grain size on the room-temperature ductility of NiAl , 1990 .

[27]  E. George,et al.  Brittle fracture and grain boundary chemistry of microalloyed NiAl , 1990 .

[28]  B. Boulogne,et al.  Room temperature tensile ductility in polycrystalline B2 NiAl , 1989 .

[29]  D. R. Barker,et al.  A brittle to ductile transition in NiAl of a critical grain size , 1983 .