A Mini-Swarm for the Quadratic Knapsack Problem

The 0-1 quadratic knapsack problem (QKP) is a hard computational problem, which is a generalization of the knapsack problem (KP). In this paper, a mini-swarm system is presented. Each agent, realized with minor declarative knowledge and simple behavioral rules, searches on a structural landscape of the problem through the guided generate-and-test behavior under the law of socially biased individual learning, and cooperates with others by indirect interactions. The formal decomposition of behaviors allows understanding and reusing elemental operators, while utilizes the heuristic information on the landscape. The results on a collection of the QKP instances by mini-swarm versions are compared with that of both a branch-and-bound algorithm and a greedy genetic algorithm, which show its effectiveness

[1]  Q. Henry Wu,et al.  A Novel Group Search Optimizer Inspired by Animal Behavioural Ecology , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[2]  David Pisinger,et al.  Solution of Large-sized Quadratic Knapsack Problems Through Aggressive Reduction , 2004 .

[3]  Shu-Cherng Fang,et al.  On the Convergence of a Population-Based Global Optimization Algorithm , 2004, J. Glob. Optim..

[4]  P. Hammer,et al.  Quadratic knapsack problems , 1980 .

[5]  Xin Yao,et al.  Global optimisation by evolutionary algorithms , 1997, Proceedings of IEEE International Symposium on Parallel Algorithms Architecture Synthesis.

[6]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[7]  Allen Newell,et al.  SOAR: An Architecture for General Intelligence , 1987, Artif. Intell..

[8]  Alain Billionnet,et al.  An exact method based on Lagrangian decomposition for the 0-1 quadratic knapsack problem , 2004, Eur. J. Oper. Res..

[9]  David J. Rader,et al.  Efficient Methods For Solving Quadratic 0–1 Knapsack Problems , 1997 .

[10]  Paolo Toth,et al.  Exact Solution of the Quadratic Knapsack Problem , 1999, INFORMS J. Comput..

[11]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[12]  David Pisinger,et al.  Core Problems in Knapsack Algorithms , 1999, Oper. Res..

[13]  José Neves,et al.  The fully informed particle swarm: simpler, maybe better , 2004, IEEE Transactions on Evolutionary Computation.

[14]  N. Taatgen Learning without limits: from problem solving towards a Unified Theory of Learning , 1999 .

[15]  Wim Hordijk,et al.  A Measure of Landscapes , 1996, Evolutionary Computation.

[16]  M. Clerc,et al.  Particle Swarm Optimization , 2006 .

[17]  James A. Reggia,et al.  Extending Self-Organizing Particle Systems to Problem Solving , 2004, Artificial Life.

[18]  Alain Billionnet,et al.  Linear programming for the 0–1 quadratic knapsack problem , 1996 .

[19]  David Pisinger,et al.  Solution of Large Quadratic Knapsack Problems Through Aggressive Reduction , 2007, INFORMS J. Comput..

[20]  Oscar H. Ibarra,et al.  Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems , 1975, JACM.

[21]  John E. Beasley,et al.  A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.

[22]  K. Laland,et al.  Social Learning in Animals: Empirical Studies and Theoretical Models , 2005 .

[23]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[24]  Zhongsheng Hua,et al.  An approximate dynamic programming approach to convex quadratic knapsack problems , 2006, Comput. Oper. Res..

[25]  Jiming Liu,et al.  A compact multiagent system based on autonomy oriented computing , 2005, IEEE/WIC/ACM International Conference on Intelligent Agent Technology.

[26]  John R. Anderson Learning and memory: An integrated approach, 2nd ed. , 2000 .

[27]  Danny Weyns,et al.  On the Role of Environments in Multiagent Systems , 2005, Informatica.

[28]  Zbigniew Michalewicz,et al.  Inver-over Operator for the TSP , 1998, PPSN.

[29]  Bernd Freisleben,et al.  New Genetic Local Search Operators for the Traveling Salesman Problem , 1996, PPSN.

[30]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[31]  Paolo Toth,et al.  New trends in exact algorithms for the 0-1 knapsack problem , 2000, Eur. J. Oper. Res..

[32]  Xiao-Feng Xie,et al.  SWAF: Swarm Algorithm Framework for Numerical Optimization , 2004, GECCO.

[33]  G. Dantzig Discrete-Variable Extremum Problems , 1957 .

[34]  David Pisinger,et al.  Where are the hard knapsack problems? , 2005, Comput. Oper. Res..

[35]  Wenjun Zhang,et al.  Solving Engineering Design Problems by Social Cognitive Optimization , 2004, GECCO.

[36]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[37]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[38]  Bryant A. Julstrom Greedy, genetic, and greedy genetic algorithms for the quadratic knapsack problem , 2005, GECCO '05.

[39]  Philippe Michelon,et al.  Lagrangean methods for the 0-1 Quadratic Knapsack Problem , 1996 .

[40]  Xiaodong Li,et al.  Particle swarm with speciation and adaptation in a dynamic environment , 2006, GECCO.

[41]  David S. Johnson,et al.  `` Strong '' NP-Completeness Results: Motivation, Examples, and Implications , 1978, JACM.

[42]  Alain Billionnet,et al.  A new upper bound for the 0-1 quadratic knapsack problem , 1999, Eur. J. Oper. Res..

[43]  Jeffrey K. Olick and,et al.  Social Memory Studies: From “Collective Memory” to the Historical Sociology of Mnemonic Practices , 1998 .

[44]  Egon Balas,et al.  An Algorithm for Large Zero-One Knapsack Problems , 1980, Oper. Res..

[45]  R. Weismantel,et al.  A Semidefinite Programming Approach to the Quadratic Knapsack Problem , 2000, J. Comb. Optim..

[46]  G Gigerenzer,et al.  Reasoning the fast and frugal way: models of bounded rationality. , 1996, Psychological review.

[47]  A. Isen,et al.  Affect, accessibility of material in memory, and behavior: a cognitive loop? , 1978, Journal of personality and social psychology.

[48]  Riccardo Poli,et al.  Information landscapes , 2005, GECCO '05.

[49]  Xiaolong Jin,et al.  Autonomy Oriented Computing: From Problem Solving to Complex Systems Modeling (Multiagent Systems, Artificial Societies, and Simulated Organizations) , 2004 .

[50]  P. Richerson,et al.  The Origin and Evolution of Cultures , 2005 .

[51]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[52]  Gerhard J. Woeginger,et al.  The quadratic 0-1 knapsack problem with series-parallel support , 2002, Oper. Res. Lett..

[53]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[54]  L. Darrell Whitley,et al.  An overview of evolutionary algorithms: practical issues and common pitfalls , 2001, Inf. Softw. Technol..

[55]  Bart Selman,et al.  Algorithm Portfolio Design: Theory vs. Practice , 1997, UAI.

[56]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[57]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[58]  Jiming Liu,et al.  Autonomy-Oriented Computing (AOC) , 2007, Wiley Encyclopedia of Computer Science and Engineering.