Design, synthesis, and biological evaluation of 10-methanesulfonyl-DDACTHF, 10-methanesulfonyl-5-DACTHF, and 10-methylthio-DDACTHF as potent inhibitors of GAR Tfase and the de novo purine biosynthetic pathway.

[1]  D. Boger,et al.  10-(2-benzoxazolcarbonyl)-5,10-dideaza-acyclic-5,6,7,8-tetrahydrofolic acid: a potential inhibitor of GAR transformylase and AICAR transformylase. , 2003, Bioorganic & medicinal chemistry.

[2]  D. Boger,et al.  Design, synthesis, and biological evaluation of simplified alpha-keto heterocycle, trifluoromethyl ketone, and formyl substituted folate analogues as potential inhibitors of GAR transformylase and AICAR transformylase. , 2003, Bioorganic & medicinal chemistry.

[3]  D. Boger,et al.  Design, synthesis and biological evaluation of 10-CF3CO-DDACTHF analogues and derivatives as inhibitors of GAR Tfase and the de novo purine biosynthetic pathway. , 2003, Bioorganic & medicinal chemistry.

[4]  Stephen J Benkovic,et al.  Rational design, synthesis, evaluation, and crystal structure of a potent inhibitor of human GAR Tfase: 10-(trifluoroacetyl)-5,10-dideazaacyclic-5,6,7,8-tetrahydrofolic acid. , 2003, Biochemistry.

[5]  R. Christopherson,et al.  Inhibitors of de novo nucleotide biosynthesis as drugs. , 2002, Accounts of chemical research.

[6]  D. Boger,et al.  10-Formyl-5,10-dideaza-acyclic-5,6,7,8-tetrahydrofolic acid (10-formyl-DDACTHF): a potent cytotoxic agent acting by selective inhibition of human GAR Tfase and the de novo purine biosynthetic pathway. , 2002, Bioorganic & medicinal chemistry.

[7]  D. Boger,et al.  Unexpected Formation of an Epoxide Derived Multisubstrate Adduct Inhibitor on the Active Site of GAR Transformylase , 2001 .

[8]  J. H. Shim,et al.  Design, synthesis, and biological evaluation of fluoronitrophenyl substituted folate analogues as potential inhibitors of GAR transformylase and AICAR transformylase. , 2000, Bioorganic & medicinal chemistry letters.

[9]  J. H. Shim,et al.  Conformationally restricted analogues designed for selective inhibition of GAR Tfase versus thymidylate synthase or dihydrofolate reductase. , 2000, Bioorganic & medicinal chemistry.

[10]  D. Boger,et al.  New insights into inhibitor design from the crystal structure and NMR studies of Escherichia coli GAR transformylase in complex with beta-GAR and 10-formyl-5,8,10-trideazafolic acid. , 1999, Biochemistry.

[11]  R. Schultz,et al.  Multiple folate enzyme inhibition: mechanism of a novel pyrrolopyrimidine-based antifolate LY231514 (MTA). , 1998, Advances in enzyme regulation.

[12]  D. Boger,et al.  Design, synthesis, and evaluation of potential GAR and AICAR transformylase inhibitors. , 1998, Bioorganic & medicinal chemistry.

[13]  W G Laver,et al.  Design and synthesis of benzoic acid derivatives as influenza neuraminidase inhibitors using structure-based drug design. , 1997, Journal of medicinal chemistry.

[14]  D. Boger,et al.  Functionalized analogues of 5,8,10-trideazafolate as potential inhibitors of GAR Tfase or AICAR Tfase. , 1997, Bioorganic & medicinal chemistry.

[15]  D. Boger,et al.  Abenzyl 10-formyl-trideazafolic acid (abenzyl 10-formyl-TDAF): an effective inhibitor of glycinamide ribonucleotide transformylase. , 1997, Bioorganic & medicinal chemistry.

[16]  D. Boger,et al.  Functionalized analogues of 5,8,10-trideazafolate: development of an enzyme-assembled tight binding inhibitor of GAR Tfase and a potential irreversible inhibitor of AICAR Tfase. , 1997, Bioorganic & medicinal chemistry.

[17]  D. Boger,et al.  Multisubstrate analogue based on 5,8,10-trideazafolate. , 1997, Bioorganic & medicinal chemistry.

[18]  D. Boger,et al.  10-Formyl-5,8,10-trideazafolic acid (10-formyl-TDAF): a potent inhibitor of glycinamide ribonucleotide transformylase. , 1997, Bioorganic & medicinal chemistry.

[19]  S. Benkovic,et al.  The transformylase enzymes of de novo purine biosynthesis , 1984 .

[20]  R. Schultz,et al.  A novel class of monoglutamated antifolates exhibits tight-binding inhibition of human glycinamide ribonucleotide formyltransferase and potent activity against solid tumors. , 1994, Cancer research.

[21]  J. Barredo,et al.  A dideazatetrahydrofolate analogue lacking a chiral center at C-6, N-[4-[2-(2-amino-3,4-dihydro-4-oxo-7H-pyrrolo[2,3-d]pyrimidin-5- yl)ethyl]benzoyl]-L-glutamic acid, is an inhibitor of thymidylate synthase. , 1992, Journal of medicinal chemistry.

[22]  R. Ferone,et al.  Synthesis and biological activity of open-chain analogues of 5,6,7,8-tetrahydrofolic acid--potential antitumor agents. , 1992, Journal of medicinal chemistry.

[23]  C. Shih,et al.  Synthesis and biological activity of acyclic analogues of 5,10-dideaza-5,6,7,8-tetrahydrofolic acid. , 1992, Journal of medicinal chemistry.

[24]  C. Shih,et al.  The 6S- and 6R-diastereomers of 5, 10-dideaza-5, 6, 7, 8-tetrahydrofolate are equiactive inhibitors of de novo purine synthesis. , 1989, The Journal of biological chemistry.

[25]  J. M. Hamby,et al.  Synthesis and antitumor activity of 5-deaza-5,6,7,8-tetrahydrofolic acid and its N10-substituted analogues. , 1989, Journal of medicinal chemistry.

[26]  J. Schornagel,et al.  Identification of a membrane-associated folate-binding protein in human leukemic CCRF-CEM cells with transport-related methotrexate resistance. , 1989, Cancer research.

[27]  R. Moran,et al.  A new folate antimetabolite, 5,10-dideaza-5,6,7,8-tetrahydrofolate is a potent inhibitor of de novo purine synthesis. , 1989, The Journal of biological chemistry.

[28]  A. J. Marisca,et al.  Methanesulfonanilides and the Mannich reaction , 1987 .

[29]  L. Warren,et al.  Biosynthesis of the purines. XIX. 2-Amino-N-ribosylacetamide 5'-phosphate (glycinamide ribotide) transformylase. , 1957, The Journal of biological chemistry.