Fano correlation effect of optical response due to plasmon–exciton–plasmon interaction in an artificial hybrid molecule system

We theoretically study the coupling of a semiconductor quantum dot (QD) to two metal nanoparticles (MNPs) based on cavity quantum electrodynamics and canonical transformation. It is shown that a Fano correlation effect shown in the energy absorption spectrum of this hybrid molecule appears, which stems from two correlated Fano interference processes because the two MNPs share a common segment of optical pathway involving QD as a result of the plasmon–exciton–plasmon interaction. The results also demonstrate that it is feasible to change the energy absorption of one MNP by adjusting the position of the other MNP, which may be potentially applied in plasmonic light trapping of MNPs in photovoltaic devices. Our work will open an avenue to deal with the coupling of QDs to a few MNPs in the quantum regime.

[1]  Ulrich Hohenester,et al.  Strong coupling between a metallic nanoparticle and a single molecule , 2008, 0802.1630.

[2]  Tolga Atay,et al.  Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons. , 2005, Nano letters.

[3]  Tobias Ambjörnsson,et al.  Observing plasmonic-molecular resonance coupling on single gold nanorods. , 2010, Nano letters.

[4]  Yuri S. Kivshar,et al.  Fano Resonances in Nanoscale Structures , 2010 .

[5]  F. D. Abajo,et al.  Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides , 2008, 0802.0040.

[6]  Rosalba Saija,et al.  Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna. , 2010, ACS nano.

[7]  A. Koenderink Plasmon nanoparticle array waveguides for single photon and single plasmon sources. , 2009, Nano letters.

[8]  Wei Zhang,et al.  Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: The case of strong nonlinearity , 2011 .

[9]  F. D. Abajo,et al.  Optical excitations in electron microscopy , 2009, 0903.1669.

[10]  Yeechi Chen,et al.  Plasmonic nanoparticle dimers for optical sensing of DNA in complex media. , 2010, Journal of the American Chemical Society.

[11]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[12]  Yoshihiko Kanemitsu,et al.  Energy transfer in mixed CdSe and Au nanoparticle monolayers studied by simultaneous photoluminescence and Raman spectral measurements , 2008 .

[13]  Rajesh R. Naik,et al.  Optical Characterization of Bio-assembled Hybrid Nanostructures , 2006 .

[14]  M. Lukin,et al.  Generation of single optical plasmons in metallic nanowires coupled to quantum dots , 2007, Nature.

[15]  F J García de Abajo,et al.  Quantum plexcitonics: strongly interacting plasmons and excitons. , 2011, Nano letters.

[16]  Jin-Jin Li,et al.  A tunable optical response of a hybrid semiconductor quantum dot-metal nanoparticle complex in the presence of optical excitations , 2012 .

[17]  S. Maier,et al.  Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach. , 2011, Nano letters.

[18]  L. Feldkamp,et al.  Interaction of many discrete states with many continua , 1977 .

[19]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[20]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[21]  D. Bimberg,et al.  Ultralong dephasing time in InGaAs quantum dots. , 2001, Physical review letters.

[22]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[23]  U. Hohenester,et al.  Interaction of Single Molecules With Metallic Nanoparticles , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[24]  Nicholas A. Kotov,et al.  Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles , 2007 .

[25]  Naomi J Halas,et al.  Plexciton dynamics: exciton-plasmon coupling in a J-aggregate-Au nanoshell complex provides a mechanism for nonlinearity. , 2011, Nano letters.

[26]  Ulrich Hohenester,et al.  Förster-type resonant energy transfer influenced by metal nanoparticles. , 2008, Nano letters.

[27]  S. Gambhir,et al.  Gold nanoparticles: a revival in precious metal administration to patients. , 2011, Nano letters.

[28]  A. Badolato,et al.  The nonlinear Fano effect , 2008, Nature.

[29]  Garnett W. Bryant,et al.  Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies , 2006 .

[30]  L Martin-Moreno,et al.  Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. , 2010, Physical review letters.

[31]  Igor L. Medintz,et al.  Spectrally resolved energy transfer using quantum dot donors: Ensemble and single-molecule photoluminescence studies , 2006 .