Pure Lorentz spin connection theories and uniqueness of general relativity
暂无分享,去创建一个
[1] T. Zlosnik,et al. Canonical structure of minimal varying Λ theories , 2021, 2104.03753.
[2] K. Krasnov,et al. Deformations of GR, geometrodynamics and reality conditions , 2020, 2012.05706.
[3] C. Deffayet,et al. Theory for multiple partially massless spin-2 fields , 2019, Physical Review D.
[4] Ermis Mitsou. Spin connection formulations of real Lorentzian general relativity , 2019, Classical and Quantum Gravity.
[5] K. Krasnov. Self-dual gravity , 2016, 1610.01457.
[6] X. Bekaert,et al. Note about a pure spin-connection formulation of general relativity and spin-2 duality in (A)dS , 2015, 1512.09060.
[7] M. Montesinos,et al. Alternative derivation of Krasnov's action for general relativity , 2015, 1509.00076.
[8] Rachel A. Rosen,et al. A nonlinear extension of the spin-2 partially massless symmetry , 2014, 1410.8734.
[9] Wenliang Li,et al. No-go theorems for unitary and interacting partially massless spin-two fields. , 2014, Physical review letters.
[10] M. Oksanen,et al. Hamiltonian analysis of curvature-squared gravity with or without conformal invariance , 2013, 1311.4141.
[11] A. Tolley,et al. Evidence for and obstructions to nonlinear partially massless gravity , 2013, 1302.0025.
[12] S. Deser,et al. Partial masslessness and conformal gravity , 2012, 1208.1307.
[13] D. Grumiller,et al. Canonical bifurcation in higher derivative, higher spin, theories , 2012, 1208.0339.
[14] D. Beke. Scalar-Tensor theory as a singular subsector of Λ(ϕ) Plebanski gravity , 2012 .
[15] K. Krasnov. Spontaneous Symmetry Breaking and Gravity , 2011, 1112.5097.
[16] D. Beke,et al. Pauli-Fierz mass term in modified Plebanski gravity , 2011, 1112.4051.
[17] D. Beke. Scalar-Tensor theory as a singular subsector of {\Lambda}({\phi}) Plebanski gravity , 2011, 1111.1139.
[18] J. Maldacena. Einstein Gravity from Conformal Gravity , 2011, 1105.5632.
[19] K. Krasnov. Pure connection action principle for general relativity. , 2011, Physical review letters.
[20] K. Krasnov. Gravity as a diffeomorphism invariant gauge theory , 2011, 1101.4788.
[21] S. Speziale. Bimetric theory of gravity from the nonchiral Plebanski action , 2010, 1003.4701.
[22] K. Krasnov. Effective metric Lagrangians from an underlying theory with two propagating degrees of freedom , 2009, 0911.4903.
[23] K. Krasnov,et al. Gravity-Yang-Mills-Higgs unification by enlarging the gauge group , 2009, 0911.3793.
[24] K. Krasnov. Plebanski gravity without the simplicity constraints , 2008, 0811.3147.
[25] K. Krasnov,et al. Hamiltonian analysis of non-chiral Plebanski theory and its generalizations , 2008, 0809.4763.
[26] K. Krasnov. Deformations of the constraint algebra of Ashtekar's Hamiltonian formulation of general relativity. , 2008, Physical review letters.
[27] S. Alexandrov. Simplicity and closure constraints in spin foam models of gravity , 2008, 0802.3389.
[28] L. Smolin. Plebanski action extended to a unification of gravity and Yang-Mills theory , 2007, 0712.0977.
[29] Jonathan Engle,et al. LQG vertex with finite Immirzi parameter , 2007, 0711.0146.
[30] K. Krasnov. On deformations of Ashtekar's constraint algebra , 2007, 0711.0090.
[31] K. Krasnov,et al. A new spin foam model for 4D gravity , 2007, 0708.1595.
[32] I. Bengtsson. NOTE ON NON-METRIC GRAVITY , 2007, gr-qc/0703114.
[33] K. Krasnov. Renormalizable Non-Metric Quantum Gravity? , 2006, hep-th/0611182.
[34] Alejandro Perez,et al. Spin Foam Models for Quantum Gravity , 2003, gr-qc/0301113.
[35] J. M. Nester,et al. HAMILTONIAN ANALYSIS OF POINCARÉ GAUGE THEORY: HIGHER SPIN MODES , 2001, gr-qc/0112030.
[36] D. Oriti. Spacetime geometry from algebra: spin foam models for non-perturbative quantum gravity , 2001, gr-qc/0106091.
[37] S. Deser,et al. Partial masslessness of higher spins in (A)dS , 2001, hep-th/0103198.
[38] S. Alexandrov. SO(4,C)-covariant Ashtekar-Barbero gravity and the Immirzi parameter , 2000, gr-qc/0005085.
[39] R. Pietri,et al. so(4) Plebanski action and relativistic spin-foam model , 1998, gr-qc/9804071.
[40] I. Bengtsson. Strange reality: Ashtekar's variables with variations , 1993 .
[41] I. Bengtsson. Clifford Algebra of Two-Forms, Conformal Structures, and Field Equations , 1992, gr-qc/9210001.
[42] I. Bengtsson. Self‐duality and the metric in a family of neighbors of Einstein’s equations , 1991 .
[43] I. Bengtsson. The cosmological constants , 1991 .
[44] Jacobson,et al. General relativity without the metric. , 1989, Physical review letters.
[45] A. Ashtekar,et al. New Hamiltonian formulation of general relativity. , 1987, Physical review. D, Particles and fields.
[46] Rafael I. Nepomechie,et al. Gauge invariance versus masslessness in de Sitter spaces , 1984 .
[47] J. Plebański. On the separation of Einsteinian substructures , 1977 .
[48] R. Pietri,et al. Plebanski Action and Relativistic Spin Foam Model , 1998 .