Pure Lorentz spin connection theories and uniqueness of general relativity

General relativity (GR) can be reformulated as a diffeomorphism invariant gauge theory of the Lorentz group, with Lagrangian of the type f(F ∧ F), where F is the curvature two-form of the spin connection. A theory from this class with a generic f is known to propagate eight degrees of freedom: a massless graviton, a massive graviton and a scalar. GR in this formalism avoids extra degrees of freedom because the function f is special and leads to the appearance of six extra primary constraints on the phase space variables. Our main new result is that there are other theories of the type f(F ∧ F) that lead to six extra primary constraints. However, only in the case of GR the dynamics is such that these six primary constraints get supplemented by six secondary constraints, which gives the end result of two propagating degrees of freedom. This is how uniqueness of GR manifests itself in this ‘pure spin connection’ formalism. The other theories we discover are shown to give examples of irregular dynamical systems. At the linear level around (anti-)de Sitter space they have two degrees of freedom, as GR, with the extra ones manifesting themselves only non-linearly.

[1]  T. Zlosnik,et al.  Canonical structure of minimal varying Λ theories , 2021, 2104.03753.

[2]  K. Krasnov,et al.  Deformations of GR, geometrodynamics and reality conditions , 2020, 2012.05706.

[3]  C. Deffayet,et al.  Theory for multiple partially massless spin-2 fields , 2019, Physical Review D.

[4]  Ermis Mitsou Spin connection formulations of real Lorentzian general relativity , 2019, Classical and Quantum Gravity.

[5]  K. Krasnov Self-dual gravity , 2016, 1610.01457.

[6]  X. Bekaert,et al.  Note about a pure spin-connection formulation of general relativity and spin-2 duality in (A)dS , 2015, 1512.09060.

[7]  M. Montesinos,et al.  Alternative derivation of Krasnov's action for general relativity , 2015, 1509.00076.

[8]  Rachel A. Rosen,et al.  A nonlinear extension of the spin-2 partially massless symmetry , 2014, 1410.8734.

[9]  Wenliang Li,et al.  No-go theorems for unitary and interacting partially massless spin-two fields. , 2014, Physical review letters.

[10]  M. Oksanen,et al.  Hamiltonian analysis of curvature-squared gravity with or without conformal invariance , 2013, 1311.4141.

[11]  A. Tolley,et al.  Evidence for and obstructions to nonlinear partially massless gravity , 2013, 1302.0025.

[12]  S. Deser,et al.  Partial masslessness and conformal gravity , 2012, 1208.1307.

[13]  D. Grumiller,et al.  Canonical bifurcation in higher derivative, higher spin, theories , 2012, 1208.0339.

[14]  D. Beke Scalar-Tensor theory as a singular subsector of Λ(ϕ) Plebanski gravity , 2012 .

[15]  K. Krasnov Spontaneous Symmetry Breaking and Gravity , 2011, 1112.5097.

[16]  D. Beke,et al.  Pauli-Fierz mass term in modified Plebanski gravity , 2011, 1112.4051.

[17]  D. Beke Scalar-Tensor theory as a singular subsector of {\Lambda}({\phi}) Plebanski gravity , 2011, 1111.1139.

[18]  J. Maldacena Einstein Gravity from Conformal Gravity , 2011, 1105.5632.

[19]  K. Krasnov Pure connection action principle for general relativity. , 2011, Physical review letters.

[20]  K. Krasnov Gravity as a diffeomorphism invariant gauge theory , 2011, 1101.4788.

[21]  S. Speziale Bimetric theory of gravity from the nonchiral Plebanski action , 2010, 1003.4701.

[22]  K. Krasnov Effective metric Lagrangians from an underlying theory with two propagating degrees of freedom , 2009, 0911.4903.

[23]  K. Krasnov,et al.  Gravity-Yang-Mills-Higgs unification by enlarging the gauge group , 2009, 0911.3793.

[24]  K. Krasnov Plebanski gravity without the simplicity constraints , 2008, 0811.3147.

[25]  K. Krasnov,et al.  Hamiltonian analysis of non-chiral Plebanski theory and its generalizations , 2008, 0809.4763.

[26]  K. Krasnov Deformations of the constraint algebra of Ashtekar's Hamiltonian formulation of general relativity. , 2008, Physical review letters.

[27]  S. Alexandrov Simplicity and closure constraints in spin foam models of gravity , 2008, 0802.3389.

[28]  L. Smolin Plebanski action extended to a unification of gravity and Yang-Mills theory , 2007, 0712.0977.

[29]  Jonathan Engle,et al.  LQG vertex with finite Immirzi parameter , 2007, 0711.0146.

[30]  K. Krasnov On deformations of Ashtekar's constraint algebra , 2007, 0711.0090.

[31]  K. Krasnov,et al.  A new spin foam model for 4D gravity , 2007, 0708.1595.

[32]  I. Bengtsson NOTE ON NON-METRIC GRAVITY , 2007, gr-qc/0703114.

[33]  K. Krasnov Renormalizable Non-Metric Quantum Gravity? , 2006, hep-th/0611182.

[34]  Alejandro Perez,et al.  Spin Foam Models for Quantum Gravity , 2003, gr-qc/0301113.

[35]  J. M. Nester,et al.  HAMILTONIAN ANALYSIS OF POINCARÉ GAUGE THEORY: HIGHER SPIN MODES , 2001, gr-qc/0112030.

[36]  D. Oriti Spacetime geometry from algebra: spin foam models for non-perturbative quantum gravity , 2001, gr-qc/0106091.

[37]  S. Deser,et al.  Partial masslessness of higher spins in (A)dS , 2001, hep-th/0103198.

[38]  S. Alexandrov SO(4,C)-covariant Ashtekar-Barbero gravity and the Immirzi parameter , 2000, gr-qc/0005085.

[39]  R. Pietri,et al.  so(4) Plebanski action and relativistic spin-foam model , 1998, gr-qc/9804071.

[40]  I. Bengtsson Strange reality: Ashtekar's variables with variations , 1993 .

[41]  I. Bengtsson Clifford Algebra of Two-Forms, Conformal Structures, and Field Equations , 1992, gr-qc/9210001.

[42]  I. Bengtsson Self‐duality and the metric in a family of neighbors of Einstein’s equations , 1991 .

[43]  I. Bengtsson The cosmological constants , 1991 .

[44]  Jacobson,et al.  General relativity without the metric. , 1989, Physical review letters.

[45]  A. Ashtekar,et al.  New Hamiltonian formulation of general relativity. , 1987, Physical review. D, Particles and fields.

[46]  Rafael I. Nepomechie,et al.  Gauge invariance versus masslessness in de Sitter spaces , 1984 .

[47]  J. Plebański On the separation of Einsteinian substructures , 1977 .

[48]  R. Pietri,et al.  Plebanski Action and Relativistic Spin Foam Model , 1998 .