Genes for directing vacuolar morphogenesis in Saccharomyces cerevisiae. I. Isolation and characterization of two classes of vam mutants.

[1]  Y. Anraku,et al.  Genes for directing vacuolar morphogenesis in Saccharomyces cerevisiae. II. VAM7, a gene for regulating morphogenic assembly of the vacuoles. , 1992, The Journal of biological chemistry.

[2]  Y. Anraku,et al.  A novel pathway of import of alpha-mannosidase, a marker enzyme of vacuolar membrane, in Saccharomyces cerevisiae. , 1990, The Journal of biological chemistry.

[3]  S. Emr,et al.  The fungal vacuole: composition, function, and biogenesis. , 1990, Microbiological reviews.

[4]  A. Nakano,et al.  Biogenesis of vacuolar membrane glycoproteins of yeast Saccharomyces cerevisiae. , 1990, The Journal of biological chemistry.

[5]  Y. Anraku,et al.  The SLP1 gene of Saccharomyces cerevisiae is essential for vacuolar morphogenesis and function , 1990, Molecular and cellular biology.

[6]  R. Hirata,et al.  Structure and function of the yeast vacuolar membrane proton ATPase , 1989, Journal of bioenergetics and biomembranes.

[7]  Y. Anraku,et al.  Nucleotide sequence ofAMS1, the structure gene of vacuolarα-mannosidase of Saccharomyces cerevisiae , 1989 .

[8]  R F Murphy,et al.  Assay of vacuolar pH in yeast and identification of acidification-defective mutants. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[9]  T. Stevens,et al.  Characterization of genes required for protein sorting and vacuolar function in the yeast Saccharomyces cerevisiae. , 1989, The EMBO journal.

[10]  C. J. Roberts,et al.  Structure, biosynthesis, and localization of dipeptidyl aminopeptidase B, an integral membrane glycoprotein of the yeast vacuole , 1989, The Journal of cell biology.

[11]  E. W. Jones,et al.  Processing pathway for protease B of Saccharomyces cerevisiae , 1989, The Journal of cell biology.

[12]  S. Emr,et al.  Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases , 1988, Molecular and cellular biology.

[13]  S. Emr,et al.  Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting , 1988, The Journal of cell biology.

[14]  L. Weisman,et al.  Intervacuole exchange in the yeast zygote: a new pathway in organelle communication. , 1988, Science.

[15]  Y. Anraku,et al.  Mutants of Saccharomyces cerevisiae with defective vacuolar function , 1988, Journal of bacteriology.

[16]  Y. Anraku,et al.  Dynamic aspects of vacuolar and cytosolic amino acid pools of Saccharomyces cerevisiae , 1988, Journal of bacteriology.

[17]  Y. Anraku,et al.  Vacuolar ion channel of the yeast, Saccharomyces cerevisiae. , 1987, The Journal of biological chemistry.

[18]  L. Weisman,et al.  Multiple methods of visualizing the yeast vacuole permit evaluation of its morphology and inheritance during the cell cycle , 1987, The Journal of cell biology.

[19]  T. Stevens,et al.  Protein sorting in yeast: Mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway , 1986, Cell.

[20]  S. Emr,et al.  Isolation of yeast mutants defective in protein targeting to the vacuole. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[21]  M. Innis,et al.  The PEP4 gene encodes an aspartyl protease implicated in the posttranslational regulation of Saccharomyces cerevisiae vacuolar hydrolases , 1986, Molecular and cellular biology.

[22]  T. Stevens,et al.  PEP4 gene of Saccharomyces cerevisiae encodes proteinase A, a vacuolar enzyme required for processing of vacuolar precursors , 1986, Molecular and cellular biology.

[23]  T. Stevens,et al.  Overproduction-induced mislocalization of a yeast vacuolar protein allows isolation of its structural gene. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Y. Anraku,et al.  Isolation and characterization of Ca2+-sensitive mutants of Saccharomyces cerevisiae. , 1986, Journal of general microbiology.

[25]  H. Riezman Endocytosis in yeast: Several of the yeast secretory mutants are defective in endocytosis , 1985, Cell.

[26]  Y. Anraku,et al.  Purification and properties of H+-translocating, Mg2+-adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. , 1985, The Journal of biological chemistry.

[27]  Y. Anraku,et al.  Substrate specificities of active transport systems for amino acids in vacuolar-membrane vesicles of Saccharomyces cerevisiae. Evidence of seven independent proton/amino acid antiport systems. , 1984, The Journal of biological chemistry.

[28]  Y. Anraku,et al.  Calcium transport driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae. , 1983, The Journal of biological chemistry.

[29]  Randy Schekman,et al.  Early stages in the yeast secretory pathway are required for transport of carboxypeptidase Y to the vacuole , 1982, Cell.

[30]  Y. Anraku,et al.  Properties of H+-translocating adenosine triphosphatase in vacuolar membranes of SAccharomyces cerevisiae. , 1981, The Journal of biological chemistry.

[31]  Y. Anraku,et al.  Active transport of basic amino acids driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae. , 1981, The Journal of biological chemistry.

[32]  P. Matile Biochemistry and Function of Vacuoles , 1978 .

[33]  H. Roman Studies of gene mutation in Saccharomyces. , 1956, Cold Spring Harbor symposia on quantitative biology.