Recent Progress in Interfacial Nanoarchitectonics in Solid-State Batteries

Employing solid electrolytes in lithium-ion batteries is anticipated to be a solution to some issues originated from their organic electrolytes. However, solid-state lithium batteries had not been practicable, because ionic conductivities of lithium-ion conductive solid electrolytes had been very low. Therefore, many studies aiming at the development of solid-state lithium batteries have been focused on enhancement of ionic transport in solids. They have succeeded in enhancing the conductivity to be comparable to or even higher than that of liquids. At this stage, rate-determining step of the battery reactions is sometimes ionic transport at interface rather than bulk in the battery components. Since anomalous ionic conduction at the interface takes place in space-charge layers with ca. 10 nm in thickness, it will be controlled by “nanoarchitectonics”. This paper reviews some interfacial nanoarchitectures that control the interfacial ionic conduction to enhance the performance of solid-state lithium batteries.

[1]  A. Hayashi,et al.  Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery , 2013, Scientific Reports.

[2]  A. Hayashi,et al.  Interfacial Observation between LiCoO2 Electrode and Li2S−P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy† , 2010 .

[3]  Kazunori Takada,et al.  A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries , 2014 .

[4]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.

[5]  M. Osada,et al.  Enhancement of the High‐Rate Capability of Solid‐State Lithium Batteries by Nanoscale Interfacial Modification , 2006 .

[6]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[7]  Self‐Organized Core—Shell Structure for High‐Power Electrode in Solid‐State Lithium Batteries. , 2011 .

[8]  Xiangxin Guo,et al.  Influence of lithium oxide additives on densification and ionic conductivity of garnet-type Li6.75La3Zr1.75Ta0.25O12 solid electrolytes , 2013 .

[9]  Katsuhiko Ariga,et al.  Bioinspired nanoarchitectonics as emerging drug delivery systems , 2014 .

[10]  A. Hayashi,et al.  Evaluation of elastic modulus of Li2S–P2S5 glassy solid electrolyte by ultrasonic sound velocity measurement and compression test , 2013 .

[11]  Liyuan Han,et al.  Space–Charge Layer Effect at Interface between Oxide Cathode and Sulfide Electrolyte in All-Solid-State Lithium-Ion Battery , 2014 .

[12]  S. Ramakrishna,et al.  Nanostructured cathode materials: a key for better performance in Li-ion batteries , 2011 .

[13]  Minoru Osada,et al.  LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries , 2007 .

[14]  Tsutomu Ohzuku,et al.  Synthesis and Characterization of LiAl1 / 4Ni3 / 4 O 2 ( R 3̄m ) for Lithium‐Ion (Shuttlecock) Batteries , 1995 .

[15]  K. Takada,et al.  Lithium ion conductive glass and its application to solid state batteries , 1998 .

[16]  Katsuhiko Ariga,et al.  Bioactive nanocarbon assemblies: Nanoarchitectonics and applications , 2014 .

[17]  Yoshiyuki Inaguma,et al.  A rechargeable lithium–air battery using a lithium ion-conducting lanthanum lithium titanate ceramics as an electrolyte separator , 2013 .

[18]  A. Rabenau,et al.  Ionic conductivity in Li3N single crystals , 1977 .

[19]  Y. Shao-horn,et al.  Segregation Tendency in Layered Aluminum-Substituted Lithium Nickel Oxides , 2009 .

[20]  T. Sasaki,et al.  Oversized Titania Nanosheet Crystallites Derived from Flux-Grown Layered Titanate Single Crystals , 2003 .

[21]  Ki‐Hyun Kim,et al.  High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si , 2011 .

[22]  A. Pradel,et al.  Lithium chalcogenide conductive glasses , 1989 .

[23]  John B. Goodenough,et al.  LixCoO2 (0, 1981 .

[24]  Ping He,et al.  Nano active materials for lithium-ion batteries. , 2010, Nanoscale.

[25]  G. Jellison,et al.  A Stable Thin‐Film Lithium Electrolyte: Lithium Phosphorus Oxynitride , 1997 .

[26]  Takashi Uchida,et al.  High ionic conductivity in lithium lanthanum titanate , 1993 .

[27]  K. Tadanaga,et al.  New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses , 2005 .

[28]  Xianhui Bu,et al.  Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity , 2003, Nature.

[29]  K. Takada,et al.  An amorphous Si film anode for all-solid-state lithium batteries , 2014 .

[30]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[31]  Tsutomu Minami,et al.  Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries , 2006 .

[32]  M. Osada,et al.  Interfacial modification for high-power solid-state lithium batteries , 2008 .

[33]  I. Chuang,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004 .

[34]  M. Osada,et al.  Exfoliated oxide nanosheets: new solution to nanoelectronics , 2009 .

[35]  H. Yamasaki,et al.  Dielectric Modification of 5V‐Class Cathodes for High‐Voltage All‐Solid‐State Lithium Batteries , 2014 .

[36]  Katsuhiko Ariga,et al.  Layer-by-layer Nanoarchitectonics: Invention, Innovation, and Evolution , 2014 .

[37]  Meilin Liu,et al.  Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives , 2011 .

[38]  Joachim Maier,et al.  Ionic conduction in space charge regions , 1995 .

[39]  M. Osada,et al.  Tantalum oxide nanomesh as self-standing one nanometre thick electrolyte , 2011 .

[40]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[41]  C. Delmas,et al.  On the structure of Li3Ti2(PO4)3 , 2002 .

[42]  Ryoji Kanno,et al.  Lithium Ionic Conductor Thio-LISICON. The Li2S-GeS2-P2S5 System. , 2001 .

[43]  Yair Ein-Eli,et al.  Higher, Stronger, Better…︁ A Review of 5 Volt Cathode Materials for Advanced Lithium‐Ion Batteries , 2012 .

[44]  B. Boukamp,et al.  Fast ionic conductivity in lithium nitride , 1978 .

[45]  G. Robert,et al.  Superionic conduction in Li2S - P2S5 - LiI - glasses , 1981 .

[46]  M. Klingler,et al.  Coulometric titration of substituted LixLa(2−x)/3 TiO3 , 1997 .

[47]  M. Osada,et al.  Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte , 2012 .

[48]  Y. Sadaoka,et al.  Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate. , 1990 .

[49]  J. Kennedy Ionically conductive glasses based on SiS2 , 1989 .

[50]  Ryoji Kanno,et al.  Lithium Ionic Conductor Thio-LISICON: The Li2 S ­ GeS2 ­ P 2 S 5 System , 2001 .

[51]  Yo Kobayashi,et al.  Densification of LiTi2(PO4)3-based solid electrolytes by spark-plasma-sintering , 1999 .

[52]  G. Haas Invention, innovation, and evocation. , 2008, The Canadian journal of urology.

[53]  M. Osada,et al.  High performance silicon-based anodes in solid-state lithium batteries , 2014 .