Agriculture is the major source of economy in many developing countries. India, containing around 18 percent of the total population of the world, is a typical example where most of its population is directly or indirectly engaged in agricultural activities to earn their livelihood. To the worse, diseases endemic to the crops make lives of poor farmers miserable to the extent that they even take the extreme steps of ending their lives. Technology, as it stands today, can't root out their all worries but definitely it can help those making right decisions at right time. Often the farmers end up bewildered in finding out the correct crop disease and insecticides or pesticides to apply in the right doses to the targeted crop. Such wrong decisions make the poor farmers pay penalties in the form of low yields, insecticide costs, or even absolute crop damage. Thus, an appropriate decision making aid to the uneducated and underprivileged section of the society may help in alleviating their pain to some levels. In this chapter, we propose a framework to build an expert system for managing crop crisis, the focus of the system can be different as per the requirement of the modeller, however; we exemplify the proposed framework by taking an example of crop disease diagnostics. Since, decision making in agriculture is vulnerable to a number of human errors and biases, therefore, we assert to incorporate the use of fuzzy inferences in determining the exact decisions at demanding times. An expert system is a machine representation of a human expert at making decisions. Since, experts may differ on some aspects; therefore, we advocate the use of fuzzy numbers arithmetic in making out a safe decision under the clouds of uncertainty. RÉSUMÉ. L'Agriculture est la principale source d'économie dans de nombreux pays en développement. L'Inde, qui compte environ 18 pour cent de la population mondiale, est un exemple typique où la plupart de sa population est directement ou indirectement engagée dans des activités agricoles pour gagner sa vie. Pire encore, les maladies endémiques aux cultures rendent la vie des agriculteurs pauvres si misérable qu'ils prennent même les mesures extrêmes pour mettre fin à leurs jours. La technologie, telle qu'elle est aujourd'hui, ne peut pas extirper tous leurs soucis, mais elle peut certainement aider ceux qui prennent les bonnes décisions au bon moment. Souvent, les agriculteurs finissent par être déconcertés en découvrant les maladies des cultures et les insecticides ou pesticides à appliquer aux bonnes doses à la culture ciblée. Ces mauvaises décisions font payer aux agriculteurs pauvres des pénalités sous la forme de faibles rendements, de coûts d'insecticide, ou même de dommages absolus aux cultures. Ainsi, 204 JESA. Volume 51 – n° 4-6/2018 une aide appropriée à la prise de décision pour la partie non instruite et défavorisée de la société peut aider à soulager leur douleur à certains niveaux. Dans ce chapitre, nous proposons un cadre pour construire un système expert pour gérer la crise des cultures, l'accent du système peut être différent selon les exigences du modélisateur, cependant; nous illustrons le cadre proposé en prenant un exemple de diagnostic des maladies des cultures. Étant donné que la prise de décisions en agriculture est vulnérable à un certain nombre d'erreurs humaines et de préjugés, nous affirmons qu'il faut tenir compte de l'utilisation d'inférences floues pour déterminer les décisions exactes à des moments difficiles. Un système expert est une représentation mécanique d'un expert humain pour prendre des décisions. Puisque les experts peuvent diverger sur certains aspects, nous préconisons l'utilisation de l'arithmétique des nombres flous pour prendre une décision sûre sous les nuages d'incertitude.
[1]
S. Carpenter,et al.
Solutions for a cultivated planet
,
2011,
Nature.
[2]
Ryszard S. Michalski.
A Computer-Based Advisory System for Diagnosing Soybean Diseases in Illinois
,
1983
.
[3]
M. Jeuffroy,et al.
Designing coupled innovations for the sustainability transition of agrifood systems
,
2017
.
[4]
Ioan Fazey,et al.
Evaluating knowledge exchange in interdisciplinary and multi-stakeholder research
,
2014
.
[5]
S. Robinson,et al.
Food Security: The Challenge of Feeding 9 Billion People
,
2010,
Science.
[6]
Uduak A. Umoh,et al.
Fuzzy Rule-based Framework for Effective Control of Profitability in a Paper Recycling Plant
,
2010
.
[7]
M. Cellura,et al.
Introducing exergy analysis in life cycle assessment: A case study
,
2018,
Mathematical Modelling of Engineering Problems.
[8]
Mohammad Rafiuzzaman,et al.
A Fuzzy Logic based Agricultural Decision Support System for Assessment of Crop Yield Potential using Shallow Ground Water Table
,
2016
.
[9]
V Ganesan,et al.
Decision Support System “Crop-9-DSS“ for Identified Crops
,
2007
.
[10]
Prateek Pandey,et al.
An Efficient Time Series Forecasting Method Exploiting Fuzziness and Turbulences in Data
,
2017,
Int. J. Fuzzy Syst. Appl..
[11]
Robert LIN,et al.
NOTE ON FUZZY SETS
,
2014
.
[12]
Prateek Pandey,et al.
A fuzzy decision making approach for analogy detection in new product forecasting
,
2015,
J. Intell. Fuzzy Syst..
[13]
Prateek Pandey,et al.
A Critical Evaluation of Computational Methods of Forecasting Based on Fuzzy Time Series
,
2013,
Int. J. Decis. Support Syst. Technol..
[14]
C. Balocco,et al.
Heat and moisture transfer investigation of surface building materials
,
2018,
Mathematical Modelling of Engineering Problems.
[15]
A. Senthil Kumar,et al.
Neural Network based Plant Identification using Leaf Characteristics Fusion
,
2014
.
[16]
R. Ankaiah,et al.
A framework of information technology-based agriculture information dissemination system to improve crop productivity
,
2005
.
[17]
M. S. Kalpana,et al.
Fuzzy Expert System for Diabetes using Fuzzy Verdict Mechanism
,
2011
.
[18]
John Durkin,et al.
Expert systems - design and development
,
1994
.
[19]
Prateek Pandey,et al.
Forecasting using Fuzzy Time Series for Diffusion of Innovation: Case of Tata Nano Car in India
,
2013
.
[20]
Denis Teixeira Franco,et al.
A system based on interval fuzzy approach to predict the appearance of pests in agriculture
,
2013,
2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS).
[21]
Niels Röling,et al.
From Causes to Reasons: The Human Dimension of Agricultural Sustainability
,
2003
.
[22]
Xiaodong Wang,et al.
Turbulence features of jet flow field in mine stopes
,
2017
.
[23]
Ioan Fazey,et al.
Integrating local and scientific knowledge for environmental management.
,
2010,
Journal of environmental management.
[24]
Aboubekeur Hamdi-Cherif,et al.
FISTA-A Fuzzy Inference System Tool
,
2017
.
[25]
Harvinder S. Saini,et al.
Web Based Fuzzy Expert System for Integrated Pest Management in Soybean
,
2002
.
[26]
Ebrahim H. Mamdani,et al.
An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller
,
1999,
Int. J. Hum. Comput. Stud..
[27]
S. Barbarelli,et al.
Possibility of employing a small power tangential flow turbine prototype in a micro solar concentration plant
,
2017
.