High-order finite element methods for cardiac monodomain simulations

Computational modeling of tissue-scale cardiac electrophysiology requires numerically converged solutions to avoid spurious artifacts. The steep gradients inherent to cardiac action potential propagation necessitate fine spatial scales and therefore a substantial computational burden. The use of high-order interpolation methods has previously been proposed for these simulations due to their theoretical convergence advantage. In this study, we compare the convergence behavior of linear Lagrange, cubic Hermite, and the newly proposed cubic Hermite-style serendipity interpolation methods for finite element simulations of the cardiac monodomain equation. The high-order methods reach converged solutions with fewer degrees of freedom and longer element edge lengths than traditional linear elements. Additionally, we propose a dimensionless number, the cell Thiele modulus, as a more useful metric for determining solution convergence than element size alone. Finally, we use the cell Thiele modulus to examine convergence criteria for obtaining clinically useful activation patterns for applications such as patient-specific modeling where the total activation time is known a priori.

[1]  James P. Keener,et al.  Mathematical physiology , 1998 .

[2]  Andrew Gillette Hermite and Bernstein Style Basis Functions for Cubic Serendipity Spaces on Squares and Cubes , 2012 .

[3]  Robert L. Lee,et al.  Don''t suppress the wiggles|they''re telling you something! Computers and Fluids , 1981 .

[4]  Douglas N. Arnold,et al.  Finite element differential forms on cubical meshes , 2012, Math. Comput..

[5]  Leslie Tung,et al.  A bi-domain model for describing ischemic myocardial d-c potentials , 1978 .

[6]  Roy C. P. Kerckhoffs,et al.  Patient-specific modeling of dyssynchronous heart failure: a case study. , 2011, Progress in biophysics and molecular biology.

[7]  Andrew J. Pullan,et al.  A Finite Element Method for an Eikonal Equation Model of Myocardial Excitation Wavefront Propagation , 2002, SIAM J. Appl. Math..

[8]  Eric Kerfoot,et al.  Verification of cardiac tissue electrophysiology simulators using an N-version benchmark , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  Shankarjee Krishnamoorthi,et al.  Numerical quadrature and operator splitting in finite element methods for cardiac electrophysiology , 2013, International journal for numerical methods in biomedical engineering.

[10]  Adarsh Krishnamurthy,et al.  An atlas-based geometry pipeline for cardiac Hermite model construction and diffusion tensor reorientation , 2012, Medical Image Anal..

[11]  Joakim Sundnes,et al.  Stable time integration suppresses unphysical oscillations in the bidomain model , 2014, Front. Phys..

[12]  Natalia A Trayanova,et al.  Mathematical approaches to understanding and imaging atrial fibrillation: significance for mechanisms and management. , 2014, Circulation research.

[13]  A. Quarteroni Numerical Models for Differential Problems , 2009 .

[14]  S A Niederer,et al.  Computational modelling of cardiac electrophysiology: explanation of the variability of results from different numerical solvers , 2012, International journal for numerical methods in biomedical engineering.

[15]  F. Fenton,et al.  Minimal model for human ventricular action potentials in tissue. , 2008, Journal of theoretical biology.

[16]  Adarsh Krishnamurthy,et al.  A three-dimensional finite element model of human atrial anatomy: New methods for cubic Hermite meshes with extraordinary vertices , 2013, Medical Image Anal..

[17]  Michael A. Heroux,et al.  PyTrilinos: High-performance distributed-memory solvers for Python , 2006, TOMS.

[18]  F. Fenton,et al.  Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity. , 2002, Chaos.

[19]  A. Whittemore,et al.  The Gibbs phenomenon. , 1990, AJR. American journal of roentgenology.

[20]  Charles G Hill,et al.  Introduction to Chemical Engineering Kinetics & Reactor Design , 1977 .

[21]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[22]  N. Trayanova,et al.  A Computational Model to Predict the Effects of Class I Anti-Arrhythmic Drugs on Ventricular Rhythms , 2011, Science Translational Medicine.

[23]  N. Trayanova Whole-heart modeling: applications to cardiac electrophysiology and electromechanics. , 2011, Circulation research.

[24]  Alexander V Panfilov,et al.  Modified ionic models of cardiac tissue for efficient large scale computations. , 2002, Physics in medicine and biology.

[25]  Diana X. Tran,et al.  Corrections , 1898, The Lancet Neurology.

[26]  David Kay,et al.  Efficient simulation of cardiac electrical propagation using high-order finite elements II: Adaptive p-version , 2013, J. Comput. Phys..

[27]  E. W. Thiele Relation between Catalytic Activity and Size of Particle , 1939 .

[28]  A V Panfilov,et al.  A guide to modelling cardiac electrical activity in anatomically detailed ventricles. , 2008, Progress in biophysics and molecular biology.

[29]  Kazuo Ishiguro,et al.  ON THE GIBBS PHENOMENON , 1960 .

[30]  G. Plank,et al.  Length-dependent tension in the failing heart and the efficacy of cardiac resynchronization therapy. , 2011, Cardiovascular research.

[31]  Chi-Wang Shu,et al.  On the Gibbs Phenomenon and Its Resolution , 1997, SIAM Rev..

[32]  M. Burgess,et al.  Computer simulations of three-dimensional propagation in ventricular myocardium. Effects of intramural fiber rotation and inhomogeneous conductivity on epicardial activation. , 1993, Circulation research.

[33]  Robert Michael Kirby,et al.  High-order spectral/hp element discretisation for reaction–diffusion problems on surfaces: Application to cardiac electrophysiology , 2014, J. Comput. Phys..

[34]  A. McCulloch,et al.  Patient-specific modeling of ventricular activation pattern using surface ECG-derived vectorcardiogram in bundle branch block. , 2014, Progress in biophysics and molecular biology.

[35]  Fred Lionetti,et al.  GPU Accelerated Cardiac Electrophysiology , 2010 .

[36]  Roy C. P. Kerckhoffs,et al.  Effect of transmurally heterogeneous myocyte excitation–contraction coupling on canine left ventricular electromechanics , 2009, Experimental physiology.

[37]  David Kay,et al.  Efficient simulation of cardiac electrical propagation using high order finite elements , 2012, J. Comput. Phys..

[38]  Douglas N. Arnold,et al.  The Serendipity Family of Finite Elements , 2011, Found. Comput. Math..

[39]  Kenneth A. Ellenbogen,et al.  The relationship between ventricular electrical delay and left ventricular remodelling with cardiac resynchronization therapy , 2011, European heart journal.

[40]  Mats G. Larson,et al.  The Finite Element Method: Theory, Implementation, and Applications , 2013 .

[41]  Robert Malaney Supercomputers and nuclear astrophysics , 1988 .

[42]  Caroline Mendonça Costa,et al.  Automatic parameterization strategy for cardiac electrophysiology simulations , 2013, Computing in Cardiology 2013.

[43]  P. Hunter,et al.  Mathematical model of geometry and fibrous structure of the heart. , 1991, The American journal of physiology.

[44]  K. T. ten Tusscher,et al.  Alternans and spiral breakup in a human ventricular tissue model. , 2006, American journal of physiology. Heart and circulatory physiology.

[45]  T. Sanke,et al.  [Minimal model]. , 2002, Nihon rinsho. Japanese journal of clinical medicine.

[46]  P J Hunter,et al.  A three-dimensional finite element method for large elastic deformations of ventricular myocardium: II--Prolate spheroidal coordinates. , 1996, Journal of biomechanical engineering.

[47]  Elizabeth M Cherry,et al.  Suppression of alternans and conduction blocks despite steep APD restitution: electrotonic, memory, and conduction velocity restitution effects. , 2004, American journal of physiology. Heart and circulatory physiology.

[48]  A. McCulloch,et al.  A collocation-Galerkin finite element model of cardiac action potential propagation , 1994, IEEE Transactions on Biomedical Engineering.

[49]  F. Cuoco,et al.  The relationship between ventricular electrical delay and left ventricular remodelling with cardiac resynchronization therapy , 2012 .

[50]  A. Tveito,et al.  An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. , 2005, Mathematical biosciences.

[51]  G. Strang,et al.  Operator splitting , 2011 .

[52]  G. W. Beeler,et al.  Reconstruction of the action potential of ventricular myocardial fibres , 1977, The Journal of physiology.

[53]  A. Garfinkel,et al.  A simulation study of the effects of cardiac anatomy in ventricular fibrillation. , 2004, The Journal of clinical investigation.