Evaluation of a model for the effects of substrate interactions on the kinetics of reductive dehalogenation

[1]  B. Rittmann,et al.  A model for the effects of primary substrates on the kinetics of reductive dehalogenation , 1995, Biodegradation.

[2]  A. Stams,et al.  A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth , 1993, Applied and environmental microbiology.

[3]  Lewis Semprini,et al.  In-situ transformation of carbon tetrachloride and other halogenated compounds resulting from biostimulation under anoxic conditions , 1992 .

[4]  Bruce E. Rittmann,et al.  Model-parameter estimation using least squares , 1992 .

[5]  L. Wackett,et al.  A mechanistic perspective on bacterial metabolism of chlorinated methanes , 1992, Biodegradation.

[6]  T. Leisinger,et al.  Anaerobic degradation of tetrachloromethane by Acetobacterium woodii: separation of dechlorinative activities in cell extracts and roles for vitamin B12 and other factors , 1992, Biodegradation.

[7]  J. Suflita,et al.  Relationship between hydrogen consumption, dehalogenation, and the reduction of sulfur oxyanions by Desulfomonile tiedjei , 1991, Applied and environmental microbiology.

[8]  C. Criddle,et al.  Electrolytic model system for reductive dehalogenation in aqueous environments , 1991 .

[9]  R. Thauer,et al.  Reductive formation of carbon monoxide from CCl4 and FREONs 11, 12, and 13 catalyzed by corrinoids. , 1991, Biochemistry.

[10]  P L McCarty,et al.  Transformation of carbon tetrachloride by Pseudomonas sp. strain KC under denitrification conditions , 1990, Applied and environmental microbiology.

[11]  J. Suflita,et al.  Anaerobic Aryl Reductive Dehalogenation of Halobenzoates by Cell Extracts of “Desulfomonile tiedjei” , 1990, Applied and environmental microbiology.

[12]  J. Suflita,et al.  Anaerobic Biodegradation of 2,4,5-Trichlorophenoxyacetic Acid in Samples from a Methanogenic Aquifer: Stimulation by Short-Chain Organic Acids and Alcohols , 1990, Applied and environmental microbiology.

[13]  M. D. Mikesell,et al.  Dechlorination of Chloroform by Methanosarcina Strains , 1990, Applied and environmental microbiology.

[14]  T. Leisinger,et al.  Transformation of tetra- and trichloromethane to CO2 by anaerobic bacteria is a non-enzymic process , 1990 .

[15]  A. Driessen,et al.  Energy-dependent uptake of 4-chlorobenzoate in the coryneform bacterium NTB-1 , 1990, Journal of bacteriology.

[16]  R. Thauer,et al.  Coenzyme F430 as a possible catalyst for the reductive dehalogenation of chlorinated C1 hydrocarbons in methanogenic bacteria. , 1989, Biochemistry.

[17]  R. Samson,et al.  Adsorption-Desorption Characteristics of Polychlorinated Biphenyls on Various Polymers Commonly Found in Laboratories , 1989, Applied and environmental microbiology.

[18]  W. J. Ward,et al.  Methylene chloride permeation in polycarbonate using a carbon-14 tracer , 1989 .

[19]  J. Gossett,et al.  Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions , 1989, Applied and environmental microbiology.

[20]  D. M. Harvey,et al.  DETERMINATION OF BIODEGRADATION KINETICS THROUGH USE OF ELECTROLYTIC RESPIROMETRY , 1989 .

[21]  R. Gälli,et al.  Kinetics of biotransformation of 1,1,1-trichloroethane by Clostridium sp. strain TCAIIB , 1989, Applied and environmental microbiology.

[22]  R. Gälli,et al.  Biotransformation of 1,1,1-trichloroethane, trichloromethane, and tetrachloromethane by a Clostridium sp , 1989, Applied and environmental microbiology.

[23]  B. Fathepure,et al.  Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. strain DCM , 1988, Applied and environmental microbiology.

[24]  T. Leisinger,et al.  Transformation of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacterium woodii , 1988, Applied and environmental microbiology.

[25]  E. Herricks,et al.  Mass transport to streambed biofilms , 1988 .

[26]  E. Bouwer,et al.  Transformations of trace halogenated aliphatics in anoxic biofilm columns , 1988 .

[27]  B. Fathepure,et al.  Reductive dechlorination of perchloroethylene and the role of methanogens , 1988 .

[28]  T. Vogel,et al.  Abiotic and biotic transformations of 1,1,1-trichloroethane under methanogenic conditions , 1987 .

[29]  T. Leisinger,et al.  Anaerobic dechlorination of tetrachloromethane and 1,2-dichloroethane to degradable products by pure cultures of Desulfobacterium sp. and Methanobacterium sp. , 1987 .

[30]  P L McCarty,et al.  ES Critical Reviews: Transformations of halogenated aliphatic compounds. , 1987, Environmental science & technology.

[31]  M. Suidan,et al.  Criteria establishing biofilm-kinetic types , 1987 .

[32]  Frances Z. Parsons,et al.  Kinetics of the depletion of trichloroethene. , 1987, Environmental science & technology.

[33]  W. Whitman,et al.  Methanogens and the diversity of archaebacteria. , 1987, Microbiological reviews.

[34]  V. Vilker,et al.  Biodehalogenation of bromotrichloromethane and 1,2‐dibromo‐3‐chloropropane by Pseudomonas putida PpG‐786 , 1987, Biotechnology and bioengineering.

[35]  B. Rittmann,et al.  In situ determination of kinetic parameters for biofilms: Isolation and characterization of oligotrophic biofilms , 1986, Biotechnology and bioengineering.

[36]  Keith Craig,et al.  Direct Filtration: An Australian Study , 1985 .

[37]  T. Leisinger,et al.  Dichloromethane dehalogenase of Hyphomicrobium sp. strain DM2 , 1985, Journal of bacteriology.

[38]  Frances Z. Parsons,et al.  Chlorinated Organics in Simulated Groundwater Environments , 1985 .

[39]  T. Vogel,et al.  Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions , 1985, Applied and environmental microbiology.

[40]  J. Zeikus,et al.  Single-carbon chemistry of acetogenic and methanogenic bacteria. , 1985, Science.

[41]  L. Dijkhuizen,et al.  Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10 , 1985, Applied and environmental microbiology.

[42]  F. Mosey Mathematical Modelling of the Anaerobic Digestion Process: Regulatory Mechanisms for the Formation of Short-Chain Volatile Acids from Glucose , 1983 .

[43]  P L McCarty,et al.  Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions , 1983, Applied and environmental microbiology.

[44]  Martinus Th. Van Genuchten,et al.  Analytical solutions for chemical transport with simultaneous adsorption, zero-order production and first-order decay , 1981 .

[45]  J. Zeikus Microbial populations in digesters , 1980 .

[46]  C. E. Castro,et al.  Oxidation of iron (II) porphyrins by alkyl halides. , 1973, Journal of the American Chemical Society.

[47]  G. Milne,et al.  Carbon-Halogen Bond Cleavage III. STUDIES ON BACTERIAL HALIDOHYDROLASES , 1968 .

[48]  F. Pries,et al.  Genetics and biochemistry of dehalogenating enzymes. , 1994, Annual review of microbiology.

[49]  B. Wrenn Substrate interactions during the anaerobic biodegradation of 1,1,1-trichloroethane , 1992 .

[50]  D. Janssen,et al.  Aerobic and anaerobic degradation of halogenated aliphatics , 1992 .

[51]  B. Ensley,et al.  Biochemical diversity of trichloroethylene metabolism. , 1991, Annual review of microbiology.

[52]  U. Szewzyk,et al.  Tetrachloroethylene as electron acceptor for the anaerobic degradation of benzoate , 1990 .

[53]  F. Widdel,et al.  Microbiology and ecology of sulfate-and sulfur-reducing bacteria , 1988 .

[54]  R. Oremland,et al.  Use of “Specific” Inhibitors in Biogeochemistry and Microbial Ecology , 1988 .

[55]  Frances Z. Parsons,et al.  Sequential dehalogenation of chlorinated ethenes. , 1986, Environmental science & technology.

[56]  Perry L. McCarty,et al.  Substrate Flux into Biofilms of Any Thickness , 1981 .

[57]  A. Cornish-Bowden Fundamentals of Enzyme Kinetics , 1979 .