Deterministic addressing of nanoscale devices assembled at sublithographic pitches

Multiple techniques have now been proposed using random addressing to build demultiplexers which interface between the large pitch of lithographically patterned features and the smaller pitch of self-assembled sublithographic nanowires. At the same time, the relatively high defect rates expected for molecular-sized devices and wires dictate that we design architectures with spare components so we can map around defective elements. To accommodate and mask both of these effects, we introduce a programmable addressing scheme which can be used to provide deterministic addresses for decoders built with random nanoscale addressing and potentially defective wires. We describe how this programmable addressing scheme can be implemented with emerging, nanoscale building blocks and show how to build deterministically addressable memory banks. We characterize the area required for this programmable addressing scheme. For 2048/spl times/2048 memory banks, the area overhead for address correction is less than 33%, delivering net memory densities around 10/sup 11/ b/cm/sup 2/.

[1]  Seth Copen Goldstein,et al.  NanoFabrics: spatial computing using molecular electronics , 2001, ISCA 2001.

[2]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[3]  Lars Samuelson,et al.  One-dimensional steeplechase for electrons realized , 2002 .

[4]  R. Stanley Williams,et al.  Self-assembled growth of epitaxial erbium disilicide nanowires on silicon (001) , 2000 .

[5]  Dongmok Whang,et al.  Nanolithography Using Hierarchically Assembled Nanowire Masks , 2003 .

[6]  Charles M. Lieber,et al.  Doping and Electrical Transport in Silicon Nanowires , 2000 .

[7]  C. Dekker Carbon nanotubes as molecular quantum wires , 1999 .

[8]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[9]  Florian Siegert,et al.  Epitaxial core – shell and core – multishell nanowire heterostructures , 2002 .

[10]  Gerard Ghibaudo,et al.  Experimental and theoretical investigation of nano-crystal and nitride-trap memory devices , 2001 .

[11]  A. DeHon,et al.  Nonphotolithographic nanoscale memory density prospects , 2005, IEEE Transactions on Nanotechnology.

[12]  Christopher L. Brown,et al.  Introduction of [2]Catenanes into Langmuir Films and Langmuir-Blodgett Multilayers. A Possible Strategy for Molecular Information Storage Materials , 2000 .

[13]  André DeHon,et al.  Stochastic assembly of sublithographic nanoscale interfaces , 2003 .

[14]  Mircea R. Stan,et al.  CMOS/nano co-design for crossbar-based molecular electronic systems , 2003 .

[15]  P. Avouris,et al.  Carbon Nanotube Inter- and Intramolecular Logic Gates , 2001 .

[16]  André DeHon,et al.  Array-based architecture for FET-based, nanoscale electronics , 2003 .

[17]  S. Chou,et al.  Sub-10 nm imprint lithography and applications , 1997 .

[18]  André DeHon,et al.  Law of large numbers system design , 2004 .

[19]  Charles M. Lieber,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001, Science.

[20]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[21]  Ken Eguchi,et al.  Construction and use of LB deposition machines for pilot production , 1996 .

[22]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[23]  R. Stanley Williams,et al.  Molecule-Independent Electrical Switching in Pt/Organic Monolayer/Ti Devices , 2004 .

[24]  A. Ulman,et al.  Ultrathin organic films: From Langmuir-Blodgett to self assembly , 1991 .

[25]  J. F. Stoddart,et al.  Nanoscale molecular-switch crossbar circuits , 2003 .

[26]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[27]  Michael J. Wilson,et al.  Nanowire-based sublithographic programmable logic arrays , 2004, FPGA '04.

[28]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[29]  Charles M. Lieber,et al.  Diameter-controlled synthesis of single-crystal silicon nanowires , 2001 .

[30]  Stoddart,et al.  Electronically configurable molecular-based logic gates , 1999, Science.

[31]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[32]  Charles M. Lieber,et al.  Directed assembly of one-dimensional nanostructures into functional networks. , 2001, Science.