Probabilistic models of text and images
暂无分享,去创建一个
[1] Joseph B. Kadane,et al. Bayesian Methods for Censored Categorical Data , 1987 .
[2] Alan E. Gelfand,et al. A Computational Approach for Full Nonparametric Bayesian Inference Under Dirichlet Process Mixture Models , 2002 .
[3] Anne Lohrli. Chapman and Hall , 1985 .
[4] John D. Lafferty,et al. Inducing Features of Random Fields , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[5] Lancelot F. James,et al. Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .
[6] Geoffrey E. Hinton,et al. A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.
[7] T. Ferguson. A Bayesian Analysis of Some Nonparametric Problems , 1973 .
[8] R. Kass,et al. Approximate Bayesian Inference in Conditionally Independent Hierarchical Models (Parametric Empirical Bayes Models) , 1989 .
[9] Daphne Koller,et al. Probabilistic Abstraction Hierarchies , 2001, NIPS.
[10] Donna K. Harman,et al. Overview of the First Text REtrieval Conference (TREC-1) , 1992, TREC.
[11] Abby Goodrum,et al. Image Information Retrieval: An Overview of Current Research , 2000, Informing Sci. Int. J. an Emerg. Transdiscipl..
[12] David J. Spiegelhalter,et al. VIBES: A Variational Inference Engine for Bayesian Networks , 2002, NIPS.
[13] Michael I. Jordan,et al. An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.
[14] Radford M. Neal. Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .
[15] Thomas L. Griffiths,et al. A probabilistic approach to semantic representation , 2019, Proceedings of the Twenty-Fourth Annual Conference of the Cognitive Science Society.
[16] Michael I. Jordan,et al. A generalized mean field algorithm for variational inference in exponential families , 2002, UAI.
[17] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[18] Andrew McCallum,et al. Using Maximum Entropy for Text Classification , 1999 .
[19] Hagai Attias,et al. A Variational Bayesian Framework for Graphical Models , 1999 .
[20] Michael McGill,et al. Introduction to Modern Information Retrieval , 1983 .
[21] M. Escobar,et al. Bayesian Density Estimation and Inference Using Mixtures , 1995 .
[22] Ata Kabán,et al. On an equivalence between PLSI and LDA , 2003, SIGIR.
[23] Marina Meila,et al. An Experimental Comparison of Several Clustering and Initialization Methods , 1998, UAI.
[24] C. Morris. Parametric Empirical Bayes Inference: Theory and Applications , 1983 .
[25] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[26] Jitendra Malik,et al. Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[27] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[28] D. Aldous. Exchangeability and related topics , 1985 .
[29] Thorsten Joachims,et al. Making large scale SVM learning practical , 1998 .
[30] J. Sethuraman. A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .
[31] Lawrence D. Brown. Fundamentals of Statistical Exponential Families , 1987 .
[32] D. Blackwell,et al. Ferguson Distributions Via Polya Urn Schemes , 1973 .
[33] Dennis V. Lindley,et al. Empirical Bayes Methods , 1974 .
[34] Stuart J. Russell,et al. Identity Uncertainty and Citation Matching , 2002, NIPS.
[35] Yves Chiaramella,et al. A Model for Multimedia Information Retrieval , 1996 .
[36] J. Dickey. Multiple Hypergeometric Functions: Probabilistic Interpretations and Statistical Uses , 1983 .
[37] Andrew McCallum,et al. Learning with Scope, with Application to Information Extraction and Classification , 2002, UAI.
[38] Milind R. Naphade,et al. A probabilistic framework for semantic indexing and retrieval in video , 2000, 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532).
[39] Hilbert J. Kappen,et al. General Lower Bounds based on Computer Generated Higher Order Expansions , 2012, UAI.
[40] Richard A. Harshman,et al. Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..
[41] B. M. Hill,et al. Theory of Probability , 1990 .
[42] C. Antoniak. Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .
[43] Santosh S. Vempala,et al. Latent semantic indexing: a probabilistic analysis , 1998, PODS '98.
[44] David A. Forsyth,et al. Matching Words and Pictures , 2003, J. Mach. Learn. Res..
[45] Andrew McCallum,et al. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.
[46] John D. Lafferty,et al. Statistical Models for Text Segmentation , 1999, Machine Learning.
[48] Jason D. M. Rennie. Improving multi-class text classification with Naive Bayes , 2001 .
[49] Lawrence R. Rabiner,et al. A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.
[50] Ben Taskar,et al. Probabilistic Classification and Clustering in Relational Data , 2001, IJCAI.
[51] K. Schittkowski,et al. NONLINEAR PROGRAMMING , 2022 .
[52] James Ze Wang,et al. SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[53] Michael I. Jordan,et al. Hierarchical Dirichlet Processes , 2006 .
[54] Frederick Jelinek,et al. Statistical methods for speech recognition , 1997 .
[55] Robert J. Connor,et al. Concepts of Independence for Proportions with a Generalization of the Dirichlet Distribution , 1969 .
[56] Matthew J. Beal. Variational algorithms for approximate Bayesian inference , 2003 .
[57] Elena A. Erosheva,et al. Grade of membership and latent structure models with application to disability survey data , 2002 .
[58] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[59] David Heckerman,et al. Probabilistic Models for Relational Data , 2004 .
[60] J. Pitman. Combinatorial Stochastic Processes , 2006 .
[61] Sebastian Thrun,et al. Text Classification from Labeled and Unlabeled Documents using EM , 2000, Machine Learning.
[62] Adrian E. Raftery,et al. [Practical Markov Chain Monte Carlo]: Comment: One Long Run with Diagnostics: Implementation Strategies for Markov Chain Monte Carlo , 1992 .
[63] Ata Kabán,et al. Simplicial Mixtures of Markov Chains: Distributed Modelling of Dynamic User Profiles , 2003, NIPS.
[64] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[65] R. Manmatha,et al. Automatic image annotation and retrieval using cross-media relevance models , 2003, SIGIR.
[66] Thomas A. Louis,et al. Empirical Bayes Methods , 2006 .
[67] Nando de Freitas,et al. "Name That Song!" A Probabilistic Approach to Querying on Music and Text , 2002, NIPS.
[68] David M. Blei,et al. Topic segmentation with an aspect hidden Markov model , 2001, SIGIR '01.
[69] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[70] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[71] Milind R. Naphade,et al. A probabilistic framework for semantic video indexing, filtering, and retrieval , 2001, IEEE Trans. Multim..
[72] Thomas Hofmann,et al. The Cluster-Abstraction Model: Unsupervised Learning of Topic Hierarchies from Text Data , 1999, IJCAI.
[73] Benjamin M. Marlin,et al. Collaborative Filtering: A Machine Learning Perspective , 2004 .
[74] Kenneth G. Manton,et al. Dirichlet Generalizations of Latent-Class Models , 2000, J. Classif..
[75] Aleks Jakulin,et al. Applying Discrete PCA in Data Analysis , 2004, UAI.
[76] David M. Pennock,et al. Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments , 2001, UAI.
[77] Vannevar Bush,et al. As we may think , 1945, INTR.
[78] Tom Minka,et al. Expectation-Propogation for the Generative Aspect Model , 2002, UAI.
[79] P. Donnelly,et al. Inference of population structure using multilocus genotype data. , 2000, Genetics.
[80] David A. Cohn,et al. The Missing Link - A Probabilistic Model of Document Content and Hypertext Connectivity , 2000, NIPS.