INVERSE HEAT CONDUCTION PROBLEM OF SIMULTANEOUSLY ESTIMATING SPATIALLY VARYING THERMAL CONDUCTIVITY AND HEAT CAPACITY PER UNIT VOLUME

An inverse heat conduction method for simultaneously estimating spatially varying thermal conductivity and heat capacity per unit volume under the conditions of a flash method type of experiment is developed. The unknown thermal properties are assumed to vary only in the space dimension normal to the slab sample and are modeled with piecewise linear representations. Lacking in the literature are specific requirements that must be satisfied by the number of measurements in the spatial domain in order to ensure uniqueness of the inverse solution. We prepared a series of numerical experiments to provide a better understanding of this issue. Multiple temperature sensors are shown to be necessary to determine spatially varying properties. The effectiveness of the method is illustrated through simulated experimental applications of the method.

[1]  Curtis C. Travis,et al.  Parameter identification of distributed parameter systems , 1985 .

[2]  W. Yeh Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem , 1986 .

[3]  Michael P. Polis,et al.  Parameter identification in distributed systems: A synthesising overview , 1974 .

[4]  Carlos S. Kubrusly,et al.  Distributed parameter system indentification A survey , 1977 .

[5]  W. Harmon Ray,et al.  Some recent applications of distributed parameter systems theory - A survey , 1978, Autom..

[6]  James V. Beck,et al.  Inverse Heat Conduction , 2023 .

[7]  George R. Gavalas,et al.  Identifiability of Estimates of Two-Phase Reservoir Properties in History Matching , 1984 .

[8]  L. Carotenuto,et al.  Identifiability and identification of a Galerkin approximation for a class of distributed parameter systems , 1980 .

[9]  Y. Sunahara,et al.  CHAPTER 2 – IDENTIFICATION OF DISTRIBUTED-PARAMETER SYSTEMS , 1982 .

[10]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[11]  R.E. Goodson,et al.  Parameter identification in distributed systems: A synthesizing overview , 1976, Proceedings of the IEEE.

[12]  J. Seinfeld,et al.  Estimation of spatially varying parameters in partial differential equations , 1972 .

[13]  J. Q. Liu,et al.  A numerical algorithm for remote sensing of thermal conductivity , 1981 .

[14]  S. Nakagiri,et al.  Identifiability of Spatially-Varying and Constant Parameters in Distributed Systems of Parabolic Type , 1977 .

[15]  J. Q. Liu,et al.  An Iterative Algorithm for Solving Inverse Problems of Two-Dimensional Diffusion Equations , 1984 .

[16]  C. Kubrusly,et al.  Identification of noisy distributed parameter systems using stochastic approximation , 1977 .

[17]  C. Kravaris,et al.  Identification of parameters in distributed parameter systems by regularization , 1983, The 22nd IEEE Conference on Decision and Control.

[18]  Spyros G. Tzafestas,et al.  Recent advances in the study of distributed parameter systems , 1983 .

[19]  Y. S. Touloukian Thermophysical properties of matter , 1970 .

[20]  Y. M. Chen,et al.  A generalized pulse-spectrum technique (GPST) for determining time-depenedence coefficients of one-dimensional diffusion equations , 1987 .

[21]  A. Pierce Wave methods for an inverse problem in diffusion , 1986 .