Optimal interval estimation fusion based on sensor interval estimates with confidence degrees

The interval estimation fusion method based on sensor interval estimates and their confidence degrees is developed. When sensor estimates are independent of each other, a combination rule to merge sensor estimates and their confidence degrees is proposed. Moreover, two optimization criteria: minimizing interval length with an allowable minimum confidence degree, or maximizing confidence degree with an allowable maximum interval length are suggested. In terms of the two criteria, an optimal interval estimation fusion can be obtained based on the combined intervals and their confidence degrees. Then we can extend the results on the combined interval outputs and their confidence degrees to obtain a conditional combination rule and the corresponding optimal fault-tolerant interval estimation fusion in terms of the two criteria. It is easy to see that Marzullo's fault-tolerant interval estimation fusion [Marzullo, (1990). Tolerating failures of continuous-valued sensors. ACM Transactions on Computer System, 8(4), 284-304] is a special case of our method.

[1]  Chongzhao Han,et al.  Optimal Linear Estimation Fusion — Part I : Unified Fusion Rules , 2001 .

[2]  Yunmin Zhu,et al.  The optimality for the distributed Kalman filtering fusion with feedback , 2001, Autom..

[3]  Kai-Yuan Cai,et al.  Multisensor Decision And Estimation Fusion , 2003, The International Series on Asian Studies in Computer and Information Science.

[4]  Keshu Zhang,et al.  Best Linear Unbiased Estimation Fusion with Constraints , 2003 .

[5]  Yaakov Bar-Shalom,et al.  The Effect of the Common Process Noise on the Two-Sensor Fused-Track Covariance , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[6]  S. Sitharama Iyengar,et al.  Functional characterization of fault tolerant integration in distributed sensor networks , 1991, IEEE Trans. Syst. Man Cybern..

[7]  Kuo-Chu Chang,et al.  Architectures and algorithms for track association and fusion , 2000 .

[8]  Yaakov Bar-Shalom,et al.  Multitarget-multisensor tracking: Advanced applications , 1989 .

[9]  Chongzhao Han,et al.  Optimal linear estimation fusion .I. Unified fusion rules , 2003, IEEE Trans. Inf. Theory.

[10]  D. N. Jayasimha Fault tolerance in multisensor networks , 1996, IEEE Trans. Reliab..

[11]  Ulrich Schmid,et al.  How to reconcile fault-tolerant interval intersection with the Lipschitz condition , 2001, Distributed Computing.

[12]  S. S. Iyengar,et al.  A general computational framework for distributed sensing and fault-tolerant sensor integration , 1995, IEEE Trans. Syst. Man Cybern..

[13]  Y. Bar-Shalom On the track-to-track correlation problem , 1981 .

[14]  Stelios C. A. Thomopoulos,et al.  Distributed Fusion Architectures and Algorithms for Target Tracking , 1997, Proc. IEEE.

[15]  Samuel S. Blackman,et al.  Design and Analysis of Modern Tracking Systems , 1999 .

[16]  Keith Marzullo,et al.  Tolerating failures of continuous-valued sensors , 1990, TOCS.

[17]  Y. Bar-Shalom,et al.  On optimal track-to-track fusion , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[18]  Yakov Bar-Shalom,et al.  Multitarget-Multisensor Tracking: Principles and Techniques , 1995 .

[19]  Pramod K. Varshney,et al.  Distributed Detection and Data Fusion , 1996 .