Complexity of branch-and-bound and cutting planes in mixed-integer optimization - II

We study the complexity of cutting planes and branching schemes from a theoretical point of view. We give some rigorous underpinnings to the empirically observed phenomenon that combining cutting planes and branching into a branch-and-cut framework can be orders of magnitude more efficient than employing these tools on their own. In particular, we give general conditions under which a cutting plane strategy and a branching scheme give a provably exponential advantage in efficiency when combined into branch-and-cut. The efficiency of these algorithms is evaluated using two concrete measures: number of iterations and sparsity of constraints used in the intermediate linear/convex programs. To the best of our knowledge, our results are the first mathematically rigorous demonstration of the superiority of branch-and-cut over pure cutting planes and pure branch-and-bound.

[1]  Selmer M. Johnson,et al.  On a Linear-Programming, Combinatorial Approach to the Traveling-Salesman Problem , 1959 .

[2]  William J. Cook,et al.  On cutting-plane proofs in combinatorial optimization , 1989 .

[3]  Robert E. Bixby,et al.  Solving Real-World Linear Programs: A Decade and More of Progress , 2002, Oper. Res..

[4]  Sergey I. Nikolenko,et al.  Simulating Cutting Plane Proofs with Restricted Degree of Falsity by Resolution , 2005, SAT.

[5]  Manfred W. Padberg,et al.  On the facial structure of set packing polyhedra , 1973, Math. Program..

[6]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[7]  Arist Kojevnikov Improved Lower Bounds for Tree-Like Resolution over Linear Inequalities , 2007, SAT.

[8]  Marco Di Summa,et al.  Split Cuts in the Plane , 2021, SIAM J. Optim..

[9]  Russell Impagliazzo,et al.  Upper and lower bounds for tree-like cutting planes proofs , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[10]  R. Gomory AN ALGORITHM FOR THE MIXED INTEGER PROBLEM , 1960 .

[11]  Marco Molinaro,et al.  Some lower bounds on sparse outer approximations of polytopes , 2015, Oper. Res. Lett..

[12]  M. Rudelson Distances Between Non-symmetric Convex Bodies and the $$MM^* $$ -estimate , 1998, math/9812010.

[13]  Gérard Cornuéjols,et al.  The Travelling Salesman Polytope and {0, 2}-Matchings , 1982 .

[14]  Gérard Cornuéjols,et al.  Integer Programming Models , 2021, Linear and Convex Optimization.

[15]  Egon Balas,et al.  Facets of the knapsack polytope , 1975, Math. Program..

[16]  Laurence A. Wolsey,et al.  Faces for a linear inequality in 0–1 variables , 1975, Math. Program..

[17]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[18]  Arjen K. Lenstra,et al.  Market Split and Basis Reduction: Towards a Solution of the Cornue'jols-Dawande Instances , 2000, INFORMS J. Comput..

[19]  Martin Grötschel,et al.  On the symmetric travelling salesman problem II: Lifting theorems and facets , 1979, Math. Program..

[20]  William J. Cook,et al.  Chvátal closures for mixed integer programming problems , 1990, Math. Program..

[21]  Leslie E. Trotter,et al.  Properties of vertex packing and independence system polyhedra , 1974, Math. Program..

[22]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[23]  Alexander E. Litvak,et al.  The Flatness Theorem for Nonsymmetric Convex Bodies via the Local Theory of Banach Spaces , 1999, Math. Oper. Res..

[24]  P. Pudlák Sets and Proofs: On the Complexity of the Propositional Calculus , 1999 .

[25]  Discretely Ordered Modules as a First-Order Extension of The Cutting Planes Proof System , 1998, J. Symb. Log..

[26]  Pavel Pudlák,et al.  Lower bounds for resolution and cutting plane proofs and monotone computations , 1997, Journal of Symbolic Logic.

[27]  William J. Cook,et al.  The Traveling Salesman Problem: A Computational Study , 2007 .

[28]  Andreas Goerdt Cuting Plane Versus Frege Proof Systems , 1990, CSL.

[29]  Gérard Cornuéjols,et al.  Branching on general disjunctions , 2011, Math. Program..

[30]  G. Nemhauser,et al.  Integer Programming , 2020 .

[31]  G. N. Watson A Note on Gamma Functions , 1959 .

[32]  Sanjeeb Dash,et al.  An Exponential Lower Bound on the Length of Some Classes of Branch-and-Cut Proofs , 2002, IPCO.

[33]  Vasek Chvátal,et al.  Hard Knapsack Problems , 1980, Oper. Res..

[34]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[35]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[36]  Sanjay Mehrotra,et al.  A disjunctive cutting plane procedure for general mixed-integer linear programs , 2001, Math. Program..

[37]  Marco Di Summa,et al.  Reverse Chvátal-Gomory Rank , 2015, SIAM J. Discret. Math..

[38]  Alexander A. Razborov On the Width of Semi-Algebraic Proofs and Algorithms , 2016, Electron. Colloquium Comput. Complex..

[39]  Sanjay Mehrotra,et al.  Experimental Results on Using General Disjunctions in Branch-and-Bound for General-Integer Linear Programs , 2001, Comput. Optim. Appl..

[40]  Ran Raz,et al.  Lower bounds for cutting planes proofs with small coefficients , 1995, Symposium on the Theory of Computing.

[41]  Bala Krishnamoorthy,et al.  Bounds on the size of branch-and-bound proofs for integer knapsacks , 2008, Oper. Res. Lett..

[42]  John K. Reid,et al.  A sparsity-exploiting variant of the Bartels—Golub decomposition for linear programming bases , 1982, Math. Program..

[43]  Martin Grötschel,et al.  On the symmetric travelling salesman problem I: Inequalities , 1979, Math. Program..

[44]  William R. Pulleyblank,et al.  Clique Tree Inequalities and the Symmetric Travelling Salesman Problem , 1986, Math. Oper. Res..

[45]  Daniel Dadush,et al.  On the complexity of branching proofs , 2020, CCC.

[46]  Marco Molinaro,et al.  Approximating polyhedra with sparse inequalities , 2015, Math. Program..

[47]  Vasek Chvátal,et al.  Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..

[48]  Peter Clote,et al.  Cutting planes and constant depth Frege proofs , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[49]  Arjen K. Lenstra,et al.  Market Split and Basis Reduction: Towards a Solution of the Cornue'jols-Dawande Instances , 1999, INFORMS J. Comput..

[50]  Vasek Chvátal,et al.  Edmonds polytopes and weakly hamiltonian graphs , 1973, Math. Program..

[51]  Gérard Cornuéjols,et al.  Halin graphs and the travelling salesman problem , 1983, Math. Program..

[52]  Egon Balas,et al.  programming: Properties of the convex hull of feasible points * , 1998 .

[53]  William J. Cook,et al.  Solution of a Large-Scale Traveling-Salesman Problem , 1954, 50 Years of Integer Programming.

[54]  R. Buck Partition of Space , 1943 .

[55]  Andreas Goerdt The Cutting Plane Proof System with Bounded Degree of Falsity , 1991, CSL.

[56]  John W. Chinneck,et al.  Achieving MILP feasibility quickly using general disjunctions , 2013, Comput. Oper. Res..

[57]  V. Chvátal On certain polytopes associated with graphs , 1975 .

[58]  Ralph E. Gomory,et al.  An algorithm for integer solutions to linear programs , 1958 .

[59]  Laura Sanità,et al.  0/1 Polytopes with Quadratic Chvátal Rank , 2013, IPCO.

[60]  Sanjeeb Dash,et al.  On the complexity of cutting-plane proofs using split cuts , 2010, Oper. Res. Lett..

[61]  T. Zaslavsky A combinatorial analysis of topological dissections , 1977 .

[62]  Robert E. Bixby,et al.  Mixed-Integer Programming: A Progress Report , 2004, The Sharpest Cut.

[63]  Gérard Cornuéjols,et al.  The traveling salesman problem on a graph and some related integer polyhedra , 1985, Math. Program..

[64]  E. Sperner Ein Satz über Untermengen einer endlichen Menge , 1928 .

[65]  Friedrich Eisenbrand,et al.  On the Chvátal Rank of Polytopes in the 0/1 Cube , 1999, Discret. Appl. Math..

[66]  Gérard Cornuéjols,et al.  Improved strategies for branching on general disjunctions , 2011, Math. Program..

[67]  Leslie E. Trotter,et al.  A class of facet producing graphs for vertex packing polyhedra , 1975, Discret. Math..

[68]  Kent Andersen,et al.  Split closure and intersection cuts , 2002, Math. Program..

[69]  William J. Cook,et al.  On the complexity of cutting-plane proofs , 1987, Discret. Appl. Math..

[70]  Wojciech Banaszczyk,et al.  Inequalities for convex bodies and polar reciprocal lattices inRn II: Application ofK-convexity , 1996, Discret. Comput. Geom..

[71]  Gabor Pataki,et al.  Basis reduction and the complexity of branch-and-bound , 2009, SODA '10.

[72]  Friedrich Eisenbrand,et al.  Bounds on the Chvátal Rank of Polytopes in the 0/1-Cube* , 2003, Comb..

[73]  Robert G. Jeroslow,et al.  Trivial integer programs unsolvable by branch-and-bound , 1974, Math. Program..

[74]  William J. Cook,et al.  On the Matrix-Cut Rank of Polyhedra , 2001, Math. Oper. Res..

[75]  Peter Clote,et al.  Cutting planes, connectivity, and threshold logic , 1996, Arch. Math. Log..

[76]  Jeff T. Linderoth,et al.  Constraint Orbital Branching , 2008, IPCO.

[77]  Feng Qi (祁锋),et al.  COMPLETELY MONOTONIC FUNCTION ASSOCIATED WITH THE GAMMA FUNCTIONS AND PROOF OF WALLIS' INEQUALITY , 2005 .

[78]  Andrea Lodi,et al.  Mixed Integer Programming Computation , 2010, 50 Years of Integer Programming.

[79]  Marco Molinaro,et al.  Analysis of Sparse Cutting Planes for Sparse MILPs with Applications to Stochastic MILPs , 2016, Math. Oper. Res..

[80]  Russell Impagliazzo,et al.  Stabbing Planes , 2017, ITCS.

[81]  Sanjeeb Dash,et al.  Exponential Lower Bounds on the Lengths of Some Classes of Branch-and-Cut Proofs , 2005, Math. Oper. Res..

[82]  Dima Grigoriev,et al.  Complexity of Semi-algebraic Proofs , 2002, STACS.

[83]  Egon Balas,et al.  Gomory cuts revisited , 1996, Oper. Res. Lett..

[84]  Michael A. Saunders,et al.  A Block-LU Update for Large-Scale Linear Programming , 1992, SIAM J. Matrix Anal. Appl..

[85]  A. Mahajan,et al.  Experiments with Branching using General Disjunctions , 2009 .

[86]  Nil. I. Fcbniary ON THE MATRIX-CUT RANK OF POLYHEDRA , 2005 .