BaAu2P4: layered zintl polyphosphide with infinite ∞(1)(P–) chains.

Barium gold polyphosphide BaAu2P4 was synthesized from elements and structurally characterized by single crystal X-ray diffraction. BaAu2P4 crystallizes in a new structure type, in the orthorhombic space group Fddd (No. 70) with a = 6.517(1) Å, b = 8.867(2) Å, c = 21.844(5) Å. The crystal structure of BaAu2P4 consists of Au–P layers separated by layers of Ba atoms. Each Au–P layer is composed of infinite ∞(1)(P–) chains of unique topology linked together by almost linearly coordinated Au atoms. According to Zintl–Klemm formalism, this compound is charge balanced assuming closed shell d10 configuration for Au: Ba2+(Au+)2(P–)4. Magnetic and solid state NMR measurements together with quantum-chemical calculations reveal diamagnetic and semiconducting behavior for the investigated polyphosphide, which is as expected for the charged balanced Zintl phase. Electron localization function and crystal orbital Hamilton population analyses reveal strong P–P and Au–P bonding and almost nonbonding Au–Au interactions in BaAu2P4.

[1]  V. Smetana,et al.  A sodium-containing quasicrystal: using gold to enhance sodium's covalency in intermetallic compounds. , 2012, Angewandte Chemie.

[2]  H. Eckert,et al.  CaBe2Ge2 type phosphides REIr2P2 (RE = La-Nd, Sm) and arsenides REIr2As2 (RE = La-Nd): synthesis, structure, and solid state NMR spectroscopy. , 2012, Dalton transactions.

[3]  V. Smetana,et al.  Three alkali-metal-gold-gallium systems. Ternary tunnel structures and some problems with poorly ordered cations. , 2012, Inorganic chemistry.

[4]  V. Smetana,et al.  Four polyanionic compounds in the K–Au–Ga system: a case study in exploratory synthesis and of the art of structural analysis. , 2012, Inorganic chemistry.

[5]  Y. Prots,et al.  Introducing a magnetic guest to a tetrel-free clathrate: synthesis, structure, and properties of Eu(x)Ba(8-x)Cu16P30 (0 ≤ x ≤ 1.5). , 2011, Inorganic chemistry.

[6]  T. Fässler,et al.  Zintl ions, cage compounds, and intermetalloid clusters of Group 14 and Group 15 elements. , 2011, Angewandte Chemie.

[7]  N. Browning,et al.  Synthesis and spectroscopic characterization of P-doped Na4Si4 , 2010 .

[8]  Sung‐Jin Kim,et al.  K(23)Au(12)Sn(9)--an intermetallic compound containing a large gold-tin cluster: synthesis, structure, and bonding. , 2010, Inorganic chemistry.

[9]  Sung‐Jin Kim,et al.  Synthesis, structure, and bonding in K12Au21Sn4. A polar intermetallic compound with dense Au20 and open AuSn4 layers. , 2009, Inorganic chemistry.

[10]  M. Jansen,et al.  BaAuP and BaAuAs, Synthesis via Disproportionation of Gold upon Interaction with Pnictides as Bases , 2009 .

[11]  B. Li,et al.  Gold tetrahedra as building blocks in K3Au5Tr (Tr = In, Tl) and Rb2Au3Tl and in other compounds: a broad group of electron-poor intermetallic phases. , 2009, Inorganic chemistry.

[12]  T. Nilges,et al.  [Cd3Cu]CuP10, [Cd3Cu] Cluster Stabilized in an Adamantane‐Like Polyphosphide Substructure , 2009 .

[13]  M. Yoshimura,et al.  Sn4As3 revisited: Solvothermal synthesis and crystal and electronic structure , 2009 .

[14]  T. Nilges,et al.  Chemical bonding and Mössbauer spectroscopic investigations on ternary polyphosphides AgSbP14, [Ag3Sn]P7 and [Au3Sn]P7 , 2009 .

[15]  T. Nilges,et al.  Pb5I2P28, $^{1}_{\infty}\rm [PbP_{14}]{\rm ^{2-}}$ Strands Coordinated to a Unique [Pb3I2]4+ Unit , 2009 .

[16]  T. Nilges,et al.  Crystal and electronic structure of La3Zn2−xP4 – New phosphide with isolated P3− species , 2008 .

[17]  T. Nilges,et al.  Mineralization routes to polyphosphides: Cu2P20 and Cu5InP16. , 2008, Angewandte Chemie.

[18]  J. Berry,et al.  Diamagnetic Corrections and Pascal's Constants , 2008 .

[19]  T. Nilges,et al.  Ag3SnCuP10: [Ag3Sn] tetrahedra embedded between adamantane-type [P10] cages. , 2006, Inorganic chemistry.

[20]  T. Nilges,et al.  Au3SnCuP10 and Au3SnP7: Preparation and Crystal Structures of Au3Sn Heterocluster Polyphosphides , 2006 .

[21]  J. Schmedt auf der Günne,et al.  No aromaticity of P(6)4- observed via solid state 31P-NMR spectroscopy. , 2006, Chemical communications.

[22]  Li-ping Zhu,et al.  High-pressure synthesis and structural characterization of three new polyphosphides, α-SrP3, BaP8, and LaP5 , 2003 .

[23]  B. Eisenmann,et al.  Ein Erdalkalimetallpolyphosphid ungewöhnlicher Zusammensetzung: Die Kristallstruktur von Ba5P9† , 2003 .

[24]  W. Jeitschko,et al.  Preparation and Crystal Structure of Au1—xSn1+yP14 and other Polyphosphides with HgPbP14‐Type Structure , 2002 .

[25]  E. Ratai,et al.  Magnetic Resonance Study of a Series of Phosphorus-Containing Zintl Compounds: Ca14AlP11, Ca14MnP11, and Eu14MnP11 , 2002 .

[26]  W. Jeitschko,et al.  Au2PbP2, Au2TlP2, and Au2HgP2: Ternary Gold Polyphosphides with Lead, Thallium, and Mercury in the Oxidation State Zero , 2002 .

[27]  G. Hoatson,et al.  Modelling one‐ and two‐dimensional solid‐state NMR spectra , 2002 .

[28]  K. Kovnir,et al.  Ag3SnP7: A Polyphosphide with a Unique (P7) Chain and a Novel Ag3Sn Heterocluster , 2000 .

[29]  K. Koepernik,et al.  Full-potential band-structure calculation of iron pyrite , 1999 .

[30]  L. Wüllen,et al.  Solid-state NMR connectivity studies in dipolarly coupled inorganic networks : Crystal structure and site assignments for the lithium polyphosphide LiP5 , 1999 .

[31]  Helmut Eschrig,et al.  FULL-POTENTIAL NONORTHOGONAL LOCAL-ORBITAL MINIMUM-BASIS BAND-STRUCTURE SCHEME , 1999 .

[32]  Andreas Savin,et al.  ELF: The Electron Localization Function , 1997 .

[33]  D. Rowe CRC Handbook of Thermoelectrics , 1995 .

[34]  J. Dünner,et al.  Ba8Cu16P30 – eine neue ternäre Variante des Clathrat I‐Strukturtyps , 1995 .

[35]  Richard Dronskowski,et al.  Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations , 1993 .

[36]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[37]  Andreas Savin,et al.  Electron Localization in Solid‐State Structures of the Elements: the Diamond Structure , 1992 .

[38]  U. Wortmann,et al.  The metallic polyphosphide titanium nickel phosphide (Ti2NiP5) , 1991 .

[39]  Axel D. Becke,et al.  A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .

[40]  W. Jeitschko,et al.  The crystal structures of Au2P3 and Au7P10I, polyphosphides with weak Au–Au interactions , 1979 .

[41]  W. Zachariasen The crystal structure of palladium diphosphide , 1963 .

[42]  T. Fässler Relationships Between Soluble Zintl Anions, Ligand-Stabilized Cage Compounds, and Intermetalloid Clusters of Tetrel (Si–Pb) and Pentel (P–Bi) Elements , 2011 .

[43]  Michael W. Schmidt,et al.  Quantitative Advances in the Zintl–Klemm Formalism , 2011 .

[44]  Sung‐Jin Kim,et al.  Zigzag Chains of Alternating Atoms in A2AuBi (A = Na, K) and K2AuSb. Synthesis, Structure, and Bonding , 2010 .

[45]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[46]  T. Nilges,et al.  A New Preparative Approach to HgPbP14 Structure Type Materials: Crystal Structure of Cu0.73(1)Sn1.27(1)P14 and Characterization of M1−xSn1+xP14 (M = Cu, Ag) and AgSbP14 , 2006 .

[47]  W. Jeitschko,et al.  Preparation and crystal structure of the Copper Silicon Polyphosphide Cu4SiP8 , 1996 .

[48]  M. Somer,et al.  Crystal structure of dipotassium catenaphosphidoaurate( I), K2AuP , 1991 .

[49]  T. Vanderah,et al.  31P solid state NMR studies of ZrP, Mg3P2, MgP4 and CdPS3 , 1989 .

[50]  H. Schnering,et al.  Chemistry and structural chemistry of phosphides and polyphosphides. 48. Bridging chasms with polyphosphides , 1988 .