Learning Speed in Neural Networks

Intelligent systems should improve of their own accord over time. In the natural sphere, a proven technique for self-learning takes the form of neural networks.

[1]  Philip D. Wasserman,et al.  Neural computing - theory and practice , 1989 .

[2]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[3]  S. Zeki,et al.  The cortical projections of foveal striate cortex in the rhesus monkey. , 1978, The Journal of physiology.

[4]  Douglas B. Lenat,et al.  EURISKO: A Program That Learns New Heuristics and Domain Concepts , 1983, Artif. Intell..

[5]  M. Arbib,et al.  Vision, brain, and cooperative computation , 1990 .

[6]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory, Third Edition , 1989, Springer Series in Information Sciences.

[7]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[8]  Bernard Widrow,et al.  Adaptive switching circuits , 1988 .

[9]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[10]  李幼升,et al.  Ph , 1989 .

[11]  John H. Holland,et al.  Escaping brittleness: the possibilities of general-purpose learning algorithms applied to parallel rule-based systems , 1995 .

[12]  Hermann Haken,et al.  Neural and Synergetic Computers , 1988 .

[13]  Claude Sammut,et al.  Is Learning Rate a Good Performance Criterion for Learning? , 1990, ML.

[14]  John J. Grefenstette Proceedings of the First International Conference on Genetic Algorithms and their Applications, July 24-26, 1985, at the Carnegie-Mellon University, Pittsburgh, PA , 1988 .

[15]  P. Culicover,et al.  Neural connections, mental computation , 1988 .

[16]  John H. Holland,et al.  COGNITIVE SYSTEMS BASED ON ADAPTIVE ALGORITHMS1 , 1978 .

[17]  J. Rothwell Principles of Neural Science , 1982 .

[18]  H. Szu Fast simulated annealing , 1987 .

[19]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[20]  Marvin Minsky,et al.  Perceptrons: An Introduction to Computational Geometry , 1969 .

[21]  H. Simon,et al.  Rediscovering Chemistry with the Bacon System , 1983 .

[22]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Yoh-Han Pao A connectionist net approach to autonomous machine learning of effective process control strategies , 1988 .

[24]  A. A. Mullin,et al.  Principles of neurodynamics , 1962 .

[25]  GrossbergS. Adaptive pattern classification and universal recoding , 1976 .

[26]  N. Schmajuk Role of the hippocampus in temporal and spatial navigation An adaptive neural network , 1990, Behavioural Brain Research.

[27]  Steven H. Kim Designing intelligence , 1990 .

[28]  Marc Mangel,et al.  Evolutionary optimization and neural network models of behavior , 1990, Journal of mathematical biology.

[29]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Lyle J. Borg-Graham Simulations Suggest Information Processing Roles for the Diverse Currents in Hippocampal Neurons , 1987, NIPS.

[31]  A G Barto,et al.  Toward a modern theory of adaptive networks: expectation and prediction. , 1981, Psychological review.

[32]  Stephen Grossberg,et al.  Classical and Instrumental Learning by Neural Networks , 1982 .

[33]  Geoffrey E. Hinton,et al.  A general framework for parallel distributed processing , 1986 .