A robot control architecture supported on contraction theory

ABSTRACT This paper proposes fundamentals for stability and success of a global system composed by a mobile robot, a real environment and a navigation architecture with time constraints. Contraction theory is a typical framework that provides tools and properties to prove the stability and convergence of the global system to a unique fixed point that identifies the mission success. A stability indicator based on the combination contraction property is developed to identify the mission success as a stability measure. The architecture is fully designed through C1 nonlinear dynamical systems and feedthrough maps, which makes it amenable for contraction analysis. Experiments in a realistic and uncontrolled environment are realised to verify if inherent perturbations of the sensory information and of the environment affect the stability and success of the global system.

[1]  Cristina P. Santos,et al.  A Stability Analysis for a Dynamical Robot Control Architecture , 2013 .

[2]  Ricardo O. Carelli,et al.  Switching Control of Mobile Robots for Autonomous Navigation in Unknown Environments , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[3]  Tu Duc Nguyen,et al.  Output tracking control of a flexible robot arm , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[4]  Daniel E. Koditschek,et al.  Planning and Control of Robotic Juggling and Catching Tasks , 1994, Int. J. Robotics Res..

[5]  Sebastian Thrun,et al.  Learning Metric-Topological Maps for Indoor Mobile Robot Navigation , 1998, Artif. Intell..

[6]  David Johnson,et al.  Vision-based localization and mapping for an autonomous mower , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[7]  Jean-Jacques E. Slotine,et al.  Control system design for mechanical systems using contraction theory , 2000, IEEE Trans. Autom. Control..

[8]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[9]  Yannick Aoustin,et al.  Numerical and experimental study of the virtual quadrupedal walking robot-semiquad , 2006 .

[10]  Chris J. Budd,et al.  The Dynamics of Regularized Discontinuous Maps with Applications to Impacting Systems , 2010, SIAM J. Appl. Dyn. Syst..

[11]  Ludovic Righetti,et al.  Movement generation using dynamical systems : a humanoid robot performing a drumming task , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[12]  Soon-Jo Chung,et al.  Cooperative Robot Control and Concurrent Synchronization of Lagrangian Systems , 2007, IEEE Transactions on Robotics.

[13]  Vítor Matos,et al.  Gait transition and modulation in a quadruped robot: A brainstem-like modulation approach , 2011, Robotics Auton. Syst..

[14]  Ahmed Benzerrouk,et al.  Lyapunov Global Stability for a Reactive Mobile Robot Navigation in Presence of Obstacles , 2010 .

[15]  Cristina P. Santos,et al.  Timed Trajectory Generation Combined with an Extended Kalman Filter for a Vision-Based Autonomous Mobile Robot , 2012, IAS.

[16]  Kurt Konolige,et al.  Navigation in hybrid metric-topological maps , 2011, 2011 IEEE International Conference on Robotics and Automation.

[17]  Jean-Jacques E. Slotine,et al.  Modularity, evolution, and the binding problem: a view from stability theory , 2001, Neural Networks.

[18]  Timothy Bretl,et al.  Robust coverage by a mobile robot of a planar workspace , 2013, 2013 IEEE International Conference on Robotics and Automation.

[19]  A. Ollero,et al.  Fuzzy control of reactive navigation with stability analysis based on Conicity and Lyapunov theory , 2004 .

[20]  Jean-Jacques E. Slotine,et al.  Motion Primitives for Robotic Flight Control , 2006, ArXiv.

[21]  J. Willems Paradigms and puzzles in the theory of dynamical systems , 1991 .

[22]  M. Sarcinelli-Filho,et al.  A control architecture for mobile robots using fusion of the output of distinct controllers , 2002, Proceedings of the IEEE Internatinal Symposium on Intelligent Control.

[23]  Vitor Matos,et al.  Timed trajectory generation for a toy-like wheeled robot , 2010, IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society.

[24]  Bernard Brogliato,et al.  Modeling, stability and control of biped robots - a general framework , 2004, Autom..

[25]  Jean-Jacques E. Slotine,et al.  Compositional Contraction Analysis of Resetting Hybrid Systems , 2006, IEEE Transactions on Automatic Control.

[26]  Christine Chevallereau,et al.  Stability analysis and time-varying walking control for an under-actuated planar biped robot , 2011, Robotics Auton. Syst..

[27]  Estela Bicho,et al.  Target Representation on an Autonomous Vehicle with Low-Level Sensors , 2000, Int. J. Robotics Res..

[28]  Gregor Schöner,et al.  A dynamical systems approach to task-level system integration used to plan and control autonomous vehicle motion , 1992, Robotics Auton. Syst..

[29]  Jun Nakanishi,et al.  Learning Attractor Landscapes for Learning Motor Primitives , 2002, NIPS.

[30]  Ioannis Iossifidis,et al.  Temporal stabilization of discrete movement in variable environments: An attractor dynamics approach , 2009, 2009 IEEE International Conference on Robotics and Automation.

[31]  Changjiu Zhou,et al.  Adaptive Robust Fuzzy Tracking Control for Pole Balancing Robots using Small Gain Design , 2005, Intell. Autom. Soft Comput..

[32]  S. Shankar Sastry,et al.  Vision guided navigation for a nonholonomic mobile robot , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[33]  Cristina P. Santos,et al.  Dynamical systems in robot control architectures: A building block perspective , 2012, 2012 12th International Conference on Control Automation Robotics & Vision (ICARCV).

[34]  Nicholas Roy,et al.  Rapidly-exploring Random Belief Trees for motion planning under uncertainty , 2011, 2011 IEEE International Conference on Robotics and Automation.

[35]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[36]  Cristina P. Santos,et al.  Control of movement time and sequential action through attractor dynamics: A simulation study demonstrating object interception and coordination , 2001 .

[37]  Warren E. Dixon,et al.  Lyapunov-Based Control of Robotic Systems , 2009 .

[38]  Zhihua Qu,et al.  Coverage control for a mobile robot patrolling a dynamic and uncertain environment , 2004, Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No.04EX788).

[39]  Ricardo O. Carelli,et al.  Corridor navigation and wall-following stable control for sonar-based mobile robots , 2003, Robotics Auton. Syst..

[40]  H. Luetkepohl The Handbook of Matrices , 1996 .

[41]  Jean-Jacques E. Slotine,et al.  Methodological remarks on contraction theory , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).