Fast Robust Subspace Tracking via PCA in Sparse Data-Dependent Noise

This work studies the robust subspace tracking (ST) problem. Robust ST can be simply understood as a (slow) time-varying subspace extension of robust PCA. It assumes that the true data lies in a low-dimensional subspace that is either fixed or changes slowly with time. The goal is to track the changing subspaces over time in the presence of additive sparse outliers and to do this quickly (with a short delay). We introduce a “fast” mini-batch robust ST solution that is provably correct under mild assumptions. Here “fast” means two things: (i) the subspace changes can be detected and the subspaces can be tracked with near-optimal delay, and (ii) the time complexity of doing this is the same as that of simple (non-robust) PCA. Our main result assumes piecewise constant subspaces (needed for identifiability), but we also provide a corollary for the case when there is a little change at each time. A second contribution is a novel non-asymptotic guarantee for PCA in linearly data-dependent noise. An important setting where this is useful is for linearly data dependent noise that is sparse with support that changes enough over time. The analysis of the subspace update step of our proposed robust ST solution uses this result.

[1]  Roman Vershynin,et al.  High-Dimensional Probability , 2018 .

[2]  Namrata Vaswani,et al.  Online (and Offline) Robust PCA: Novel Algorithms and Performance Guarantees , 2016, AISTATS.

[3]  Cameron Musco,et al.  Randomized Block Krylov Methods for Stronger and Faster Approximate Singular Value Decomposition , 2015, NIPS.

[4]  Viet-Dung Nguyen,et al.  Robust Subspace Tracking with Missing Data and Outliers via ADMM , 2019, 2019 27th European Signal Processing Conference (EUSIPCO).

[5]  Prateek Jain,et al.  Non-convex Robust PCA , 2014, NIPS.

[6]  Changsheng Xu,et al.  Robust Structural Sparse Tracking , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Sham M. Kakade,et al.  Robust Matrix Decomposition With Sparse Corruptions , 2011, IEEE Transactions on Information Theory.

[8]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[9]  Namrata Vaswani,et al.  Provable Dynamic Robust PCA or Robust Subspace Tracking , 2017, 2018 IEEE International Symposium on Information Theory (ISIT).

[10]  Sajid Javed,et al.  Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace Recovery , 2017, IEEE Signal Processing Magazine.

[11]  Zheng Tracy Ke,et al.  A new SVD approach to optimal topic estimation , 2017 .

[12]  Vincent Q. Vu,et al.  MINIMAX SPARSE PRINCIPAL SUBSPACE ESTIMATION IN HIGH DIMENSIONS , 2012, 1211.0373.

[13]  Gilles Blanchard,et al.  On the Convergence of Eigenspaces in Kernel Principal Component Analysis , 2005, NIPS.

[14]  Selin Aviyente,et al.  Recursive Tensor Subspace Tracking for Dynamic Brain Network Analysis , 2017, IEEE Transactions on Signal and Information Processing over Networks.

[15]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[16]  Prateek Jain,et al.  Nearly Optimal Robust Matrix Completion , 2016, ICML.

[17]  Vladimir Koltchinskii,et al.  Normal approximation and concentration of spectral projectors of sample covariance , 2015, 1504.07333.

[18]  T. Cai,et al.  Sparse PCA: Optimal rates and adaptive estimation , 2012, 1211.1309.

[19]  Lek-Heng Lim,et al.  Schubert Varieties and Distances between Subspaces of Different Dimensions , 2014, SIAM J. Matrix Anal. Appl..

[20]  Namrata Vaswani,et al.  NEARLY OPTIMAL ROBUST SUBSPACE TRACKING: A UNIFIED APPROACH , 2017, 2018 IEEE Data Science Workshop (DSW).

[21]  Namrata Vaswani,et al.  Recursive Robust PCA or Recursive Sparse Recovery in Large but Structured Noise , 2012, IEEE Transactions on Information Theory.

[22]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[23]  Lin Xiao,et al.  A Proximal-Gradient Homotopy Method for the L1-Regularized Least-Squares Problem , 2012, ICML.

[24]  Ilse C. F. Ipsen An overview of relative sin T theorems for invariant subspaces of complex matrices , 2000 .

[25]  Joel A. Tropp,et al.  User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..

[26]  Namrata Vaswani,et al.  PCA in Sparse Data-Dependent Noise , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[27]  Shuicheng Yan,et al.  Online Robust PCA via Stochastic Optimization , 2013, NIPS.

[28]  Laura Balzano,et al.  Incremental gradient on the Grassmannian for online foreground and background separation in subsampled video , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Namrata Vaswani,et al.  An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences From Their Sum , 2013, IEEE Transactions on Signal Processing.

[30]  W. Kahan,et al.  The Rotation of Eigenvectors by a Perturbation. III , 1970 .

[31]  Pablo A. Parrilo,et al.  Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..

[32]  Joel A. Tropp,et al.  Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.

[33]  Namrata Vaswani,et al.  Real-time Robust Principal Components' Pursuit , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[34]  Namrata Vaswani,et al.  Online matrix completion and online robust PCA , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[35]  Constantine Caramanis,et al.  Fast Algorithms for Robust PCA via Gradient Descent , 2016, NIPS.

[36]  Namrata Vaswani,et al.  Finite sample guarantees for PCA in non-isotropic and data-dependent noise , 2017, 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[37]  Arif Mahmood,et al.  Robust Structural Low-Rank Tracking , 2020, IEEE Transactions on Image Processing.

[38]  Namrata Vaswani,et al.  Provable Subspace Tracking From Missing Data and Matrix Completion , 2018, IEEE Transactions on Signal Processing.

[39]  B. Nadler Finite sample approximation results for principal component analysis: a matrix perturbation approach , 2009, 0901.3245.

[40]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[41]  Ren-Cang Li,et al.  Relative Perturbation Theory: II. Eigenspace and Singular Subspace Variations , 1996, SIAM J. Matrix Anal. Appl..

[42]  Namrata Vaswani,et al.  Robust PCA With Partial Subspace Knowledge , 2014, IEEE Transactions on Signal Processing.