On the non-existence of lattice tilings by quasi-crosses

We study necessary conditions for the existence of lattice tilings of Rn by quasi-crosses. We prove general non-existence results using a variety of number-theoretic tools. We then apply these results to the two smallest unclassified shapes, the (3, 1, n)-quasi-cross and the (3, 2, n)-quasi-cross. We show that for dimensions n ≤ 250, apart from the known constructions, there are no lattice tilings of Rn by (3, 1, n)-quasi-crosses except for ten remaining unresolved cases, and no lattice tilings of Rn by (3, 2, n)-quasi-crosses except for eleven remaining unresolved cases.

[1]  Sarit Buzaglo,et al.  Tilings With $n$ -Dimensional Chairs and Their Applications to Asymmetric Codes , 2013, IEEE Transactions on Information Theory.

[2]  W. Hamaker,et al.  Splitting groups by integers , 1974 .

[3]  P. Horak Tilings in Lee metric , 2009, Eur. J. Comb..

[4]  S. Golomb,et al.  Perfect Codes in the Lee Metric and the Packing of Polyominoes , 1970 .

[5]  Torleiv Kløve,et al.  Systematic, Single Limited Magnitude Error Correcting Codes for Flash Memories , 2011, IEEE Transactions on Information Theory.

[6]  Dean Hickerson,et al.  Abelian groups and packing by semicrosses. , 1986 .

[7]  Sherman Stein Packings of Rn by certain error spheres , 1984, IEEE Trans. Inf. Theory.

[8]  Karel A. Post Nonexistence Theorems on Perfect Lee Codes over Large Alphabets , 1975, Inf. Control..

[9]  Jehoshua Bruck,et al.  Codes for Asymmetric Limited-Magnitude Errors With Application to Multilevel Flash Memories , 2010, IEEE Transactions on Information Theory.

[10]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[11]  P. Horak On perfect Lee codes , 2009, Discret. Math..

[12]  Moshe Schwartz,et al.  Quasi-Cross Lattice Tilings With Applications to Flash Memory , 2011, IEEE Transactions on Information Theory.

[13]  Sherman Stein,et al.  Combinatorial packings of R3 by certain error spheres , 1984, IEEE Trans. Inf. Theory.

[14]  Tuvi Etzion,et al.  Product Constructions for Perfect Lee Codes , 2011, IEEE Transactions on Information Theory.

[15]  Torleiv Kløve,et al.  Codes Correcting Single Errors of Limited Magnitude , 2012, IEEE Transactions on Information Theory.

[16]  Hofreiter Diophantische Approximationen , 1936 .

[17]  Sherman K. Stein Factoring by subsets , 1967 .

[18]  Ulrich Tamm Splittings of Cyclic Groups and Perfect Shift Codes , 1998, IEEE Trans. Inf. Theory.

[19]  Moshe Schwartz On the non-existence of lattice tilings by quasi-crosses , 2014, Eur. J. Comb..

[20]  Peter Horák,et al.  Diameter Perfect Lee Codes , 2012, IEEE Transactions on Information Theory.

[21]  Ulrich Tamm On perfect integer codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[22]  Torleiv Kløve,et al.  Some Codes Correcting Unbalanced Errors of Limited Magnitude for Flash Memories , 2013, IEEE Transactions on Information Theory.