Material properties and operating configurations of membrane reactors for propane dehydrogenation

A modeling-based approach is presented to understand physically realistic and technologically interesting material properties and operating configurations of packed-bed membrane reactors (PBMRs) for propane dehydrogenation (PDH). PBMRs composed of microporous or mesoporous membranes combined with a PDH catalyst are considered. The influence of reaction and membrane transport parameters, as well as operating parameters such as sweep flow and catalyst placement, are investigated to determine desired “operating windows” for isothermal and nonisothermal operation. Higher Damkohler (Da) and lower Peclet (Pe) numbers are generally helpful, but are much more beneficial with highly H2-selective membranes rather than higher-flux, lower-selectivity membranes. H2-selective membranes show a plateau region of conversion that can be overcome by a large sweep flow or countercurrent operation. The latter shows a complex trade-off between kinetics and permeation, and is effective only in a limited window. H2-selective PBMRs will greatly benefit from the fabrication of thin (∼1 µm or less) membranes. © 2014 American Institute of Chemical Engineers AIChE J, 61: 922–935, 2015

[1]  Y. S. Lin,et al.  Multicomponent hydrogen/hydrocarbon separation by MFI‐type zeolite membranes , 2000 .

[2]  I. Suzuki,et al.  Dehydrogenation of propane over chromia-alumina-potassium oxide catalyst , 1977 .

[3]  Y. S. Lin,et al.  Gas Permeation and Diffusion Characteristics of MFI-Type Zeolite Membranes at High Temperatures , 2009 .

[4]  K. T. Liu,et al.  Mathematical analysis on catalytic dehydrogenation of ethylbenzene using ceramic membranes , 1992 .

[5]  S. Sridhar,et al.  Recovery of propylene from refinery off-gas using metal incorporated ethylcellulose membranes , 2000 .

[6]  Thijs J. H. Vlugt,et al.  Diffusion of propane, propylene and isobutane in 13X zeolite by molecular dynamics , 2010 .

[7]  Kamalesh K. Sirkar,et al.  Membrane in a reactor: A functional perspective , 1999 .

[8]  Xinggui Zhou,et al.  Kinetics of propane dehydrogenation over Pt–Sn/Al2O3 catalyst , 2011 .

[9]  K PrabhuAnil,et al.  DEVELOPMENT OF A HYDROGEN SELECTIVE CERAMIC MEMBRANE AND ITS APPLICATION FOR THE CONVERSION OF GREENHOUSE GASES , 1999 .

[10]  Freek Kapteijn,et al.  Zeolite based films, membranes and membrane reactors: Progress and prospects , 2006 .

[11]  Effect of catalytic combustion of hydrogen on the dehydrogenation processes in a membrane reactor. I. Mathematical model of the process , 2011 .

[12]  W. Sachtler,et al.  Catalytic dehydrogenation of propane to propene over platinum and platinum-gold alloys , 1977 .

[13]  G. K. Reddy,et al.  Effect of Pressure on High-Temperature Water Gas Shift Reaction in Microporous Zeolite Membrane Reactor , 2012 .

[14]  M. Boerrigter,et al.  Polyimide hollow fiber gas separation membranes: preparation and the suppression of plasticization in propane/propylene environments , 2001 .

[15]  Sunil Kumar,et al.  Simulation of Catalytic Dehydrogenation of Cyclohexane in Zeolite Membrane Reactor , 2009 .

[16]  Anders Holmen,et al.  Propane dehydrogenation over supported Pt and Pt-Sn catalysts: Catalyst preparation, characterization, and activity measurements , 1996 .

[17]  Effects of reactant loss and membrane selectivity on a dehydrogenation reaction in a membrane-enclosed catalytic reactor , 1995 .

[18]  R. Hughes,et al.  Equilibrium-shift in alkane dehydrogenation using a high-temperature catalytic membrane reactor , 1995 .

[19]  F. Kapteijn,et al.  Adsorptive separation of light olefin/paraffin mixtures , 2006 .

[20]  Wun-gwi Kim,et al.  Membranes from nanoporous 1D and 2D materials: A review of opportunities, developments, and challenges , 2013 .

[21]  William J. Koros,et al.  Olefin/paraffin gas separations with 6FDA-based polyimide membranes , 2000 .

[22]  J. Kuipers,et al.  A kinetic rate expression for the time-dependent coke formation rate during propane dehydrogenation over a platinum alumina monolithic catalyst , 2001 .

[23]  F. Kapteijn,et al.  High temperature permeation and separation characteristics of an all-silica DDR zeolite membrane , 2010 .

[24]  N. Xu,et al.  Hydrogen-selective zeolite membrane reactor for low temperature water gas shift reaction , 2012 .

[25]  Seung-Bin Park,et al.  Design guide of a membrane for a membrane reactor in terms of permeability and selectivity , 2000 .

[26]  F. Kapteijn,et al.  Practical Approach to Zeolitic Membranes and Coatings: State of the Art, Opportunities, Barriers, and Future Perspectives , 2012 .

[27]  Carlos A. Grande,et al.  Propane/propylene separation with Li-exchanged zeolite 13X , 2010 .

[28]  T. Steriotis,et al.  Porous ceramic membranes for propane–propylene separation via the π-complexation mechanism: unsupported systems , 2005 .

[29]  E. Kikuchi Palladium/ceramic membranes for selective hydrogen permeation and their application to membrane reactor , 1995 .

[30]  J. Santamaría,et al.  State-of-the-Art in Zeolite Membrane Reactors , 2004 .

[31]  D. Casanave,et al.  Zeolite membrane reactor for isobutane dehydrogenation : Experimental results and theoretical modelling , 1999 .

[32]  T. Tsotsis,et al.  Propane dehydrogenation in a packed-bed membrane reactor , 1993 .

[33]  Michael P. Harold,et al.  Catalysis with Inorganic Membranes , 1994 .

[34]  C. Téllez,et al.  Propane dehydrogenation over a Cr2O3/Al2O3 catalyst: transient kinetic modeling of propene and coke formation , 2003 .

[35]  V. Nikolakis,et al.  Separation of Propylene/Propane Mixtures Using Faujasite-Type Zeolite Membranes , 2005 .

[36]  W. R. Moser,et al.  MODELING AND SIMULATION OF A NONISOTHERMAL CATALYTIC MEMBRANE REACTOR , 1995 .

[37]  Jianhua Yang,et al.  Catalytic dehydrogenation of ethylbenzene to styrene in a zeolite silicalite-1 membrane reactor , 2007 .

[38]  P. Smirniotis,et al.  Modified zeolite membrane reactor for high temperature water gas shift reaction , 2010 .

[39]  J. Falconer,et al.  Hydrogen purification using a SAPO-34 membrane , 2008 .

[40]  H. H. Rosenbrock,et al.  Some general implicit processes for the numerical solution of differential equations , 1963, Comput. J..

[41]  E. Drioli,et al.  Catalytic ceramic membrane reactor design for hydrogen separation from inert gas via oxidation , 1995 .

[42]  S. Tosti,et al.  Co-current and counter-current configurations for ethanol steam reforming in a dense Pd–Ag membrane reactor , 2008 .

[43]  D. Dubbeldam,et al.  Analysis of the ITQ-12 Zeolite Performance in Propane−Propylene Separations Using a Combination of Experiments and Molecular Simulations , 2010 .

[44]  Freek Kapteijn,et al.  Temperature dependence of one‐component permeation through a silicalite‐1 membrane , 1997 .

[45]  F. Kapteijn,et al.  Isobutane dehydrogenation in a DD3R zeolite membrane reactor , 2011 .

[46]  Ronald G. Minet,et al.  A high temperature catalytic membrane reactor for propane dehydrogenation , 1993 .

[47]  Y. S. Lin,et al.  Gas permeation through DDR‐type zeolite membranes at high temperatures , 2008 .

[48]  John P. Collins,et al.  Catalytic Dehydrogenation of Propane in Hydrogen Permselective Membrane Reactors , 1996 .