Field application of glycerol to enhance reductive dechlorination of chlorinated ethenes and its impact on microbial community.

[1]  M. Rossi,et al.  Evaluation of the Bioelectrochemical Approach and Different Electron Donors for Biological Trichloroethylene Reductive Dichlorination , 2022, Toxics.

[2]  P. Hrabák,et al.  Discovering the potential of an nZVI-biochar composite as a material for the nanobioremediation of chlorinated solvents in groundwater: Degradation efficiency and effect on resident microorganisms. , 2021, Chemosphere.

[3]  D. Hunkeler,et al.  Assessment of chlorinated ethenes degradation after field scale injection of activated carbon and bioamendments: Application of isotopic and microbial analyses. , 2021, Journal of contaminant hydrology.

[4]  J. Lloyd,et al.  In situ pilot application of nZVI embedded in activated carbon for remediation of chlorinated ethene-contaminated groundwater: effect on microbial communities , 2020, Environmental Sciences Europe.

[5]  J. Wee,et al.  Simplicispira hankyongi sp. nov., a novel denitrifying bacterium isolated from sludge , 2019, Antonie van Leeuwenhoek.

[6]  Francesco Asnicar,et al.  Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 , 2019, Nature Biotechnology.

[7]  B. Gao,et al.  A Phylogenomic and Molecular Markers Based Analysis of the Class Acidimicrobiia , 2018, Front. Microbiol..

[8]  M. Černík,et al.  Thermally enhanced in situ bioremediation of groundwater contaminated with chlorinated solvents - A field test. , 2018, The Science of the total environment.

[9]  A. Franks,et al.  Inhibitory Effects of Sulfate and Nitrate Reduction on Reductive Dechlorination of PCP in a Flooded Paddy Soil , 2018, Front. Microbiol..

[10]  Fangbai Li,et al.  The effect of electron donors on the dechlorination of pentachlorophenol (PCP) and prokaryotic diversity in paddy soil , 2018 .

[11]  Benjamin D. Kaehler,et al.  Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin , 2018, Microbiome.

[12]  Natalie L. Cápiro,et al.  Organohalide Respiration with Chlorinated Ethenes under Low pH Conditions. , 2017, Environmental science & technology.

[13]  Junzhi Liu,et al.  Optimization of continuous-flow solid-phase denitrification via coupling carriers in enhancing simultaneous removal of nitrogen and organics for agricultural runoff purification , 2017, Biodegradation.

[14]  M. Černík,et al.  Microbial degradation of chloroethenes: a review , 2017, Environmental Science and Pollution Research.

[15]  S. Atashgahi,et al.  Geochemical and microbial community determinants of reductive dechlorination at a site biostimulated with glycerol , 2017, Environmental microbiology.

[16]  S. Rossetti,et al.  Microbiome Dynamics of a Polychlorobiphenyl (PCB) Historically Contaminated Marine Sediment under Conditions Promoting Reductive Dechlorination , 2016, Front. Microbiol..

[17]  M. Černík,et al.  Dynamics of organohalide-respiring bacteria and their genes following in-situ chemical oxidation of chlorinated ethenes and biostimulation. , 2016, Chemosphere.

[18]  Paul J. McMurdie,et al.  DADA2: High resolution sample inference from Illumina amplicon data , 2016, Nature Methods.

[19]  H. Ertan,et al.  Organohalide Respiring Bacteria and Reductive Dehalogenases: Key Tools in Organohalide Bioremediation , 2016, Front. Microbiol..

[20]  Tobias Goris,et al.  The Genus Sulfurospirillum , 2016 .

[21]  T. Cajthaml,et al.  Combined abiotic and biotic in-situ reduction of hexavalent chromium in groundwater using nZVI and whey: A remedial pilot test. , 2015, Journal of hazardous materials.

[22]  Valeria Mapelli,et al.  Electrochemical startup increases 1,3-propanediol titers in mixed-culture glycerol fermentations , 2015 .

[23]  M. Fukui,et al.  Complete genomes of freshwater sulfur oxidizers Sulfuricella denitrificans skB26 and Sulfuritalea hydrogenivorans sk43H: genetic insights into the sulfur oxidation pathway of betaproteobacteria. , 2014, Systematic and applied microbiology.

[24]  Susan Holmes,et al.  phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data , 2013, PloS one.

[25]  K. Konstantinidis,et al.  Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the ph , 2013, International journal of systematic and evolutionary microbiology.

[26]  P. Binning,et al.  Review of reactive kinetic models describing reductive dechlorination of chlorinated ethenes in soil and groundwater , 2013, Biotechnology and bioengineering.

[27]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[28]  S. Brooks,et al.  Genome Sequences for Six Rhodanobacter Strains, Isolated from Soils and the Terrestrial Subsurface, with Variable Denitrification Capabilities , 2012, Journal of bacteriology.

[29]  Darlene D Wagner,et al.  Unexpected Specificity of Interspecies Cobamide Transfer from Geobacter spp. to Organohalide-Respiring Dehalococcoides mccartyi Strains , 2012, Applied and Environmental Microbiology.

[30]  L. Alvarez-Cohen,et al.  Sustainable syntrophic growth of Dehalococcoides ethenogenes strain 195 with Desulfovibrio vulgaris Hildenborough and Methanobacterium congolense: global transcriptomic and proteomic analyses , 2011, The ISME Journal.

[31]  G. Garrity Bergey’s Manual® of Systematic Bacteriology , 2012, Springer New York.

[32]  Marcus J. Claesson,et al.  Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions , 2010, Nucleic acids research.

[33]  T. Mattes,et al.  Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution. , 2010, FEMS microbiology reviews.

[34]  P. L. Bjerg,et al.  Field evaluation of biological enhanced reductive dechlorination of chloroethenes in clayey till. , 2010, Environmental science & technology.

[35]  M. Kertesz,et al.  2 Hydrocarbon-Degrading Sphingomonads: Sphingomonas, Sphingobium, Novosphingobium, and Sphingopyxis , 2009 .

[36]  Yan Sun,et al.  Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) , 2008, BMC Microbiology.

[37]  F. Aulenta,et al.  Enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions , 2006 .

[38]  P. De Vos,et al.  The fermentation of glycerol byClostridium butyricum LMG 1212t2 and 1213t1 andC. pasteurianum LMG 3285 , 1991, Applied Microbiology and Biotechnology.

[39]  W. D. de Vos,et al.  Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov. , 2003, International journal of systematic and evolutionary microbiology.

[40]  M. Strous,et al.  Candidatus "Scalindua brodae", sp. nov., Candidatus "Scalindua wagneri", sp. nov., two new species of anaerobic ammonium oxidizing bacteria. , 2003, Systematic and applied microbiology.

[41]  H. Biebl,et al.  Fermentation of glycerol by Clostridium pasteurianum — batch and continuous culture studies , 2001, Journal of Industrial Microbiology and Biotechnology.

[42]  K. Jung,et al.  Isolation and characterization of a tetrachloroethylene dechlorinating bacterium, Clostridium bifermentans DPH-1. , 2000, Journal of bioscience and bioengineering.

[43]  D. Fennell,et al.  Comparison of Butyric Acid, Ethanol, Lactic Acid, and Propionic Acid as Hydrogen Donors for the Reductive Dechlorination of Tetrachloroethene , 1997 .

[44]  J. Gossett,et al.  Comparative Kinetics of Hydrogen Utilization for Reductive Dechlorination of Tetrachloroethene and Methanogenesis in an Anaerobic Enrichment Culture , 1996 .