Advancing microbial sciences by individual-based modelling

Remarkable technological advances have revealed ever more properties and behaviours of individual microorganisms, but the novel data generated by these techniques have not yet been fully exploited. In this Opinion article, we explain how individual-based models (IBMs) can be constructed based on the findings of such techniques and how they help to explore competitive and cooperative microbial interactions. Furthermore, we describe how IBMs have provided insights into self-organized spatial patterns from biofilms to the oceans of the world, phage–CRISPR dynamics and other emergent phenomena. Finally, we discuss how combining individual-based observations with IBMs can advance our understanding at both the individual and population levels, leading to the new approach of microbial individual-based ecology (μIBE).

[1]  Steven F. Railsback,et al.  Agent-Based and Individual-Based Modeling: A Practical Introduction , 2011 .

[2]  Simon V. Avery,et al.  Microbial cell individuality and the underlying sources of heterogeneity , 2006, Nature Reviews Microbiology.

[3]  D. Kell,et al.  Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. , 1996, Microbiological reviews.

[4]  S. Leibler,et al.  Bacterial Persistence as a Phenotypic Switch , 2004, Science.

[5]  D. J. Kiviet,et al.  Stochasticity of metabolism and growth at the single-cell level , 2014, Nature.

[6]  J. Glazier,et al.  Simulation of single-species bacterial-biofilm growth using the Glazier-Graner-Hogeweg model and the CompuCell3D modeling environment. , 2008, Mathematical biosciences and engineering : MBE.

[7]  Wenying Shou,et al.  Spatial self-organization favors heterotypic cooperation over cheating , 2013, eLife.

[8]  Andrew Phillips,et al.  Computational modeling of synthetic microbial biofilms. , 2012, ACS synthetic biology.

[9]  Paul A. Wiggins,et al.  Surface sensing and lateral subcellular localization of WspA, the receptor in a chemosensory‐like system leading to c‐di‐GMP production , 2012, Molecular microbiology.

[10]  G. Crooks,et al.  Scaling laws governing stochastic growth and division of single bacterial cells , 2014, Proceedings of the National Academy of Sciences.

[11]  J. Vilar,et al.  From molecular noise to behavioural variability in a single bacterium , 2004, Nature.

[12]  Alex Groisman,et al.  A microfluidic chemostat for experiments with bacterial and yeast cells , 2005, Nature Methods.

[13]  Mitchell,et al.  Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria , 1998, Science.

[14]  Frede Thingstad,et al.  Elemental composition of single cells of various strains of marine Prochlorococcus and Synechococcus using X‐ray microanalysis , 2003 .

[15]  M. Wagner,et al.  Complete nitrification by Nitrospira bacteria , 2015, Nature.

[16]  B. Schönfisch Anisotropy in cellular automata. , 1997, Bio Systems.

[17]  Chris J Myers,et al.  Dynamic modeling of cellular populations within iBioSim. , 2013, ACS synthetic biology.

[18]  C. Picioreanu,et al.  Variable cell morphology approach for individual-based modeling of microbial communities. , 2014, Biophysical journal.

[19]  Jens Roat Kultima,et al.  Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes , 2014, Nature Biotechnology.

[20]  Michael Unser,et al.  A chemostat array enables the spatio-temporal analysis of the yeast proteome , 2013, Proceedings of the National Academy of Sciences.

[21]  Michael J. North,et al.  Tutorial on agent-based modelling and simulation , 2005, Proceedings of the Winter Simulation Conference, 2005..

[22]  A. Valocchi,et al.  An improved cellular automaton method to model multispecies biofilms. , 2013, Water research.

[23]  C. Chassagnole,et al.  Dynamic modeling of the central carbon metabolism of Escherichia coli. , 2002, Biotechnology and bioengineering.

[24]  E. Virginia Armbrust,et al.  Interactions between Diatoms and Bacteria , 2012, Microbiology and Molecular Reviews.

[25]  P. Nielsen,et al.  Complete nitrification by a single microorganism , 2015, Nature.

[26]  D. Or,et al.  Trophic interactions induce spatial self-organization of microbial consortia on rough surfaces , 2014, Scientific Reports.

[27]  Rob Phillips,et al.  Probing Individual Environmental Bacteria for Viruses by Using Microfluidic Digital PCR , 2011, Science.

[28]  Alexander G. Fletcher,et al.  Chaste: An Open Source C++ Library for Computational Physiology and Biology , 2013, PLoS Comput. Biol..

[29]  William Rand,et al.  An Introduction to Agent-Based Modeling: Modeling Natural, Social, and Engineered Complex Systems with NetLogo , 2015 .

[30]  B. Waclaw,et al.  Mechanically driven growth of quasi-two-dimensional microbial colonies. , 2013, Physical review letters.

[31]  M. V. van Loosdrecht,et al.  Experimental and simulation analysis of community structure of nitrifying bacteria in a membrane-aerated biofilm. , 2007, Water science and technology : a journal of the International Association on Water Pollution Research.

[32]  J. Jensen Sur les fonctions convexes et les inégalités entre les valeurs moyennes , 1906 .

[33]  B. Palsson,et al.  Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods , 2012, Nature Reviews Microbiology.

[34]  Uta Berger,et al.  Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology , 2005, Science.

[35]  Elena Litchman,et al.  Mighty small: Observing and modeling individual microbes becomes big science , 2013, Proceedings of the National Academy of Sciences.

[36]  A. Ōkubo,et al.  Microzones surrounding phytoplankton form the basis for a stratified marine microbial ecosystem , 1985, Nature.

[37]  M. Follows,et al.  Applying “-omics” Data in Marine Microbial Oceanography , 2013 .

[38]  G. Huse Individual‐based Modeling and Ecology , 2008 .

[39]  B. Kerr,et al.  Local migration promotes competitive restraint in a host–pathogen 'tragedy of the commons' , 2006, Nature.

[40]  J. Gareth Polhill,et al.  The ODD protocol: A review and first update , 2010, Ecological Modelling.

[41]  Sam P. Brown,et al.  Metabolic and Demographic Feedbacks Shape the Emergent Spatial Structure and Function of Microbial Communities , 2013, PLoS Comput. Biol..

[42]  R. MacLean,et al.  Resource competition and social conflict in experimental populations of yeast , 2006, Nature.

[43]  M. A. Moran,et al.  Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria , 2015, Nature.

[44]  Chris J. Topping,et al.  A pattern-oriented modelling approach to simulating populations of grey partridge , 2010 .

[45]  Marten Scheffer,et al.  Super-individuals a simple solution for modelling large populations on an individual basis , 1995 .

[46]  John A. Cole,et al.  Heterogeneity in protein expression induces metabolic variability in a modeled Escherichia coli population , 2013, Proceedings of the National Academy of Sciences.

[47]  S. Quake,et al.  Long-Term Monitoring of Bacteria Undergoing Programmed Population Control in a Microchemostat , 2005, Science.

[48]  Eugene V. Koonin,et al.  Evolutionary Dynamics of the Prokaryotic Adaptive Immunity System CRISPR-Cas in an Explicit Ecological Context , 2013, Journal of bacteriology.

[49]  R. Geffers,et al.  The Pseudomonas aeruginosa Transcriptome in Planktonic Cultures and Static Biofilms Using RNA Sequencing , 2012, PloS one.

[50]  M. Wagner Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. , 2009, Annual review of microbiology.

[51]  Adam M. Feist,et al.  Reconstruction of biochemical networks in microorganisms , 2009, Nature Reviews Microbiology.

[52]  Cristian Picioreanu,et al.  iDynoMiCS: next-generation individual-based modelling of biofilms. , 2011, Environmental microbiology.

[53]  Thomas E. Gorochowski,et al.  BSim: An Agent-Based Tool for Modeling Bacterial Populations in Systems and Synthetic Biology , 2012, PloS one.

[54]  Chih-kuan Tung,et al.  Acceleration of Emergence of Bacterial Antibiotic Resistance in Connected Microenvironments , 2011, Science.

[55]  M. Kuypers,et al.  Detecting metabolic activities in single cells, with emphasis on nanoSIMS. , 2012, FEMS microbiology reviews.

[56]  M. Ginovart,et al.  Exploring the lag phase and growth initiation of a yeast culture by means of an individual-based model. , 2009, Food microbiology.

[57]  B. Schönfisch,et al.  Synchronous and asynchronous updating in cellular automata. , 1999, Bio Systems.

[58]  K. Gerdes,et al.  Molecular Mechanisms Underlying Bacterial Persisters , 2014, Cell.

[59]  K. Zengler Central Role of the Cell in Microbial Ecology , 2009, Microbiology and Molecular Biology Reviews.

[60]  M. Hamilton,et al.  Apparent Surface Associated Lag Time in Growth of Primary Biofilm Cells , 2000, Microbial Ecology.

[61]  R. Austin,et al.  Bacterial metapopulations in nanofabricated landscapes , 2006, Proceedings of the National Academy of Sciences.

[62]  P. Hogeweg Cellular automata as a paradigm for ecological modeling , 1988 .

[63]  G. Booth,et al.  BacSim, a simulator for individual-based modelling of bacterial colony growth. , 1998, Microbiology.

[64]  Isaac Klapper,et al.  Mathematical Description of Microbial Biofilms , 2010, SIAM Rev..

[65]  Johan Paulsson,et al.  Non-genetic heterogeneity from stochastic partitioning at cell division , 2011, Nature Genetics.

[66]  Michael T Laub,et al.  Evolution of two-component signal transduction systems. , 2012, Annual review of microbiology.

[67]  John Woods,et al.  Creating Individual Based Models of the Plankton Ecosystem , 2007, International Conference on Computational Science.

[68]  Alex H. Lang,et al.  Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. , 2014, Cell reports.

[69]  J. Wimpenny,et al.  A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models , 1997 .

[70]  P. Cluzel,et al.  Relationship between cellular response and behavioral variability in bacterial chemotaxis , 2007, Proceedings of the National Academy of Sciences.

[71]  M C M van Loosdrecht,et al.  Assessment of three-dimensional biofilm models through direct comparison with confocal microscopy imaging. , 2004, Water science and technology : a journal of the International Association on Water Pollution Research.

[72]  Microscale patchiness leads to large and important intraspecific internal nutrient heterogeneity in phytoplankton , 2012, Aquatic Ecology.

[73]  M. Parsek,et al.  Going local: technologies for exploring bacterial microenvironments , 2013, Nature Reviews Microbiology.

[74]  J. Kreft,et al.  Biofilms promote altruism. , 2004, Microbiology.

[75]  J. Kreft,et al.  Why is metabolic labour divided in nitrification? , 2006, Trends in microbiology.

[76]  J. Kreft,et al.  Repair rather than segregation of damage is the optimal unicellular aging strategy , 2014, BMC Biology.

[77]  Haluk Beyenal,et al.  Biofilm image reconstruction for assessing structural parameters , 2011, Biotechnology and bioengineering.

[78]  D. DeAngelis,et al.  Individual-based modeling of ecological and evolutionary processes , 2005 .

[79]  Felix J. H. Hol,et al.  Zooming in to see the bigger picture: Microfluidic and nanofabrication tools to study bacteria , 2014, Science.

[80]  D. Fell,et al.  Is maximization of molar yield in metabolic networks favoured by evolution? , 2008, Journal of theoretical biology.

[81]  J W Wimpenny,et al.  Individual-based modelling of biofilms. , 2001, Microbiology.

[82]  Maureen A. O’Malley,et al.  Do simple models lead to generality in ecology? , 2013, Trends in ecology & evolution.

[83]  Krasimira Tsaneva-Atanasova,et al.  Modelling emergence of oscillations in communicating bacteria: a structured approach from one to many cells , 2013, Journal of The Royal Society Interface.

[84]  L. Eberl,et al.  Transcriptome analysis of Pseudomonas aeruginosa biofilm development: anaerobic respiration and iron limitation , 2005 .

[85]  S. Leibler,et al.  Phenotypic Diversity, Population Growth, and Information in Fluctuating Environments , 2005, Science.

[86]  Ferdi L. Hellweger,et al.  Agent‐based modeling of the complex life cycle of a cyanobacterium (Anabaena) in a shallow reservoir , 2008 .

[87]  Mehdi Gharasoo,et al.  How the chemotactic characteristics of bacteria can determine their population patterns , 2014 .

[88]  Wenying Shou,et al.  Strong inter-population cooperation leads to partner intermixing in microbial communities , 2013, eLife.

[89]  Andrew Wright,et al.  Robust Growth of Escherichia coli , 2010, Current Biology.

[90]  Søren Molin,et al.  Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms , 2003, Molecular microbiology.

[91]  J J Heijnen,et al.  Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. , 1998, Biotechnology and bioengineering.

[92]  Byron F. Brehm-Stecher,et al.  Single-Cell Microbiology: Tools, Technologies, and Applications , 2004, Microbiology and Molecular Biology Reviews.

[93]  J. Seoane,et al.  Growth dependence of conjugation explains limited plasmid invasion in biofilms: an individual-based modelling study. , 2011, Environmental microbiology.

[94]  J. Valls,et al.  ndividual-based modelling of carbon and nitrogen dynamics in soils : arameterization and sensitivity analysis of microbial components , 2011 .

[95]  Rudolf Amann,et al.  A single-cell view on the ecophysiology of anaerobic phototrophic bacteria , 2008, Proceedings of the National Academy of Sciences.

[96]  E. Koonin,et al.  Evolution of the CRISPR-Cas adaptive immunity systems in prokaryotes: models and observations on virus-host coevolution. , 2015, Molecular bioSystems.

[97]  J. Kreft,et al.  Microbial motility involvement in biofilm structure formation--a 3D modelling study. , 2007, Water science and technology : a journal of the International Association on Water Pollution Research.

[98]  A. Arkin,et al.  Diversity in times of adversity: probabilistic strategies in microbial survival games. , 2005, Journal of theoretical biology.

[99]  J. Costerton,et al.  Pseudomonas aeruginosa Displays Multiple Phenotypes during Development as a Biofilm , 2002, Journal of bacteriology.

[100]  James Clark,et al.  Environmental selection and resource allocation determine spatial patterns in picophytoplankton cell size , 2013 .

[101]  F. Hellweger,et al.  A bunch of tiny individuals—Individual-based modeling for microbes , 2009 .

[102]  Christian Dusny,et al.  Isolated Microbial Single Cells and Resulting Micropopulations Grow Faster in Controlled Environments , 2012, Applied and Environmental Microbiology.

[103]  Jeremy Gunawardena,et al.  Models in biology: ‘accurate descriptions of our pathetic thinking’ , 2014, BMC Biology.

[104]  Phil McMinn,et al.  Modelling complex biological systems using an agent-based approach. , 2012, Integrative biology : quantitative biosciences from nano to macro.

[105]  M. Ackermann Microbial individuality in the natural environment , 2013, The ISME Journal.

[106]  S. Molin,et al.  Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants , 2003, Molecular microbiology.

[107]  L. Jaykus,et al.  Food-borne microbes : shaping the host ecosystem , 2009 .

[108]  C. Whitchurch,et al.  Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. , 2008, Environmental microbiology.

[109]  G B Ermentrout,et al.  Cellular automata approaches to biological modeling. , 1993, Journal of theoretical biology.

[110]  James Clark,et al.  Individual-based modelling of adaptation in marine microbial populations using genetically defined physiological parameters , 2011 .

[111]  P. Haccou Mathematical Models of Biology , 2022 .

[112]  M. V. van Loosdrecht,et al.  Microbial community structure in autotrophic nitrifying granules characterized by experimental and simulation analyses. , 2010, Environmental microbiology.

[113]  Zemer Gitai,et al.  Surface attachment induces Pseudomonas aeruginosa virulence , 2014, Proceedings of the National Academy of Sciences.

[114]  Roger E. Bumgarner,et al.  Gene expression in Pseudomonas aeruginosa biofilms , 2001, Nature.

[115]  R. Milo,et al.  Revised Estimates for the Number of Human and Bacteria Cells in the Body , 2016, bioRxiv.

[116]  M. Pons,et al.  Analyzing characteristic length scales in biofilm structures. , 2009, Biotechnology and bioengineering.

[117]  Mark C M van Loosdrecht,et al.  A framework for multidimensional modelling of activity and structure of multispecies biofilms. , 2005, Environmental microbiology.

[118]  Daniel Segrè,et al.  Environments that Induce Synthetic Microbial Ecosystems , 2010, PLoS Comput. Biol..

[119]  J. Kreft,et al.  Mathematical Modeling of Microbial Ecology: Spatial Dynamics of Interactions in Biofilms and Guts , 2009 .

[120]  D J Batstone,et al.  Multidimensional modelling to investigate interspecies hydrogen transfer in anaerobic biofilms. , 2006, Water research.

[121]  Paul J. Steiner,et al.  Cell polarity-driven instability generates self-organized, fractal patterning of cell layers. , 2013, ACS synthetic biology.

[122]  N. Kashtan,et al.  Response of Prochlorococcus ecotypes to co-culture with diverse marine bacteria , 2011, The ISME Journal.