Bayesian Factorizations of Big Sparse Tensors
暂无分享,去创建一个
David Dunson | Anirban Bhattacharya | Amy Herring | Jing Zhou | D. Dunson | A. Bhattacharya | A. Herring | Jing Zhou
[1] Runze Li. Variable selection for high-dimensional data , 2005 .
[2] M. G. Pittau,et al. A weakly informative default prior distribution for logistic and other regression models , 2008, 0901.4011.
[3] Wenxin Jiang. Bayesian variable selection for high dimensional generalized linear models : Convergence rates of the fitted densities , 2007, 0710.3458.
[4] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[5] Rick Chartrand,et al. Nonconvex Splitting for Regularized Low-Rank + Sparse Decomposition , 2012, IEEE Transactions on Signal Processing.
[6] Matthew West,et al. Bayesian factor regression models in the''large p , 2003 .
[7] Michel José Anzanello,et al. Chemometrics and Intelligent Laboratory Systems , 2009 .
[8] D. Dunson,et al. Sparse Bayesian infinite factor models. , 2011, Biometrika.
[9] E. Belitser,et al. Adaptive Bayesian inference on the mean of an infinite-dimensional normal distribution , 2003 .
[10] H. Sebastian Seung,et al. Learning the parts of objects by non-negative matrix factorization , 1999, Nature.
[11] Jieping Ye,et al. Sparse non-negative tensor factorization using columnwise coordinate descent , 2012, Pattern Recognit..
[12] Debdeep Pati,et al. Posterior contraction in sparse Bayesian factor models for massive covariance matrices , 2012, 1206.3627.
[13] Emmanuel J. Candès,et al. Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..
[14] Subhashis Ghosal,et al. Asymptotic normality of posterior distributions in high-dimensional linear models , 1999 .
[15] A. Agresti,et al. Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.
[16] James G. Scott,et al. Shrink Globally, Act Locally: Sparse Bayesian Regularization and Prediction , 2022 .
[17] A. U.S.,et al. Posterior consistency in linear models under shrinkage priors , 2013 .
[18] David B. Dunson,et al. Bayesian Conditional Tensor Factorizations for High-Dimensional Classification , 2013, Journal of the American Statistical Association.
[19] Pierre Comon,et al. Nonnegative approximations of nonnegative tensors , 2009, ArXiv.
[20] P. Paatero,et al. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values† , 1994 .
[21] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[22] Dominique Bontemps,et al. Bernstein von Mises Theorems for Gaussian Regression with increasing number of regressors , 2010, 1009.1370.
[23] H. Massam,et al. A conjugate prior for discrete hierarchical log-linear models , 2006, 0711.1609.
[24] D. Dunson,et al. Nonparametric Bayes Modeling of Multivariate Categorical Data , 2009, Journal of the American Statistical Association.
[25] A. V. D. Vaart,et al. Needles and Straw in a Haystack: Posterior concentration for possibly sparse sequences , 2012, 1211.1197.
[26] Michael P. Friedlander,et al. Computing non-negative tensor factorizations , 2008, Optim. Methods Softw..
[27] David B. Dunson,et al. Posterior consistency in conditional distribution estimation , 2013, J. Multivar. Anal..
[28] P. Müller,et al. Bayesian inference for gene expression and proteomics , 2006 .
[29] Stephen E. Fienberg,et al. Three centuries of categorical data analysis: Log-linear models and maximum likelihood estimation , 2007 .
[30] Jaeyong Lee,et al. GENERALIZED DOUBLE PARETO SHRINKAGE. , 2011, Statistica Sinica.
[31] James G. Scott,et al. The horseshoe estimator for sparse signals , 2010 .
[32] Karim Lounici,et al. Variable Selection with Exponential Weights and $l_0$-Penalization , 2012, 1208.2635.
[33] S. Ghosal. Asymptotic Normality of Posterior Distributions for Exponential Families when the Number of Parameters Tends to Infinity , 2000 .
[34] M. Talagrand. A new look at independence , 1996 .
[35] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[36] D. Dunson,et al. Simplex Factor Models for Multivariate Unordered Categorical Data , 2012, Journal of the American Statistical Association.
[37] Chris Hans. Elastic Net Regression Modeling With the Orthant Normal Prior , 2011 .
[38] James G. Scott,et al. Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem , 2010, 1011.2333.
[39] Wenxin Jiang,et al. On Consistency of Bayesian Inference with Mixtures of Logistic Regression , 2006, Neural Computation.
[40] J. Sethuraman. A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .
[41] Van Der Vaart,et al. Rates of contraction of posterior distributions based on Gaussian process priors , 2008 .
[42] R. Bro. PARAFAC. Tutorial and applications , 1997 .
[43] Karim Lounici,et al. Estimation and variable selection with exponential weights , 2014 .
[44] M. West,et al. High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics , 2008, Journal of the American Statistical Association.
[45] Nuria Oliver,et al. Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering , 2010, RecSys '10.
[46] A. V. D. Vaart,et al. Convergence rates of posterior distributions , 2000 .
[47] Miles E. Lopes. Estimating Unknown Sparsity in Compressed Sensing , 2013 .
[48] S. Ghosal,et al. Adaptive Bayesian multivariate density estimation with Dirichlet mixtures , 2011, 1109.6406.
[49] G. Casella,et al. The Bayesian Lasso , 2008 .
[50] Carlos M. Carvalho,et al. Sparse Statistical Modelling in Gene Expression Genomics , 2006 .
[51] Roman Vershynin,et al. Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.