The eXtensible ontology development (XOD) principles and tool implementation to support ontology interoperability

Ontologies are critical to data/metadata and knowledge standardization, sharing, and analysis. With hundreds of biological and biomedical ontologies developed, it has become critical to ensure ontology interoperability and the usage of interoperable ontologies for standardized data representation and integration. The suite of web-based Ontoanimal tools (e.g., Ontofox, Ontorat, and Ontobee) support different aspects of extensible ontology development. By summarizing the common features of Ontoanimal and other similar tools, we identified and proposed an “eXtensible Ontology Development” (XOD) strategy and its associated four principles. These XOD principles reuse existing terms and semantic relations from reliable ontologies, develop and apply well-established ontology design patterns (ODPs), and involve community efforts to support new ontology development, promoting standardized and interoperable data and knowledge representation and integration. The adoption of the XOD strategy, together with robust XOD tool development, will greatly support ontology interoperability and robust ontology applications to support data to be Findable, Accessible, Interoperable and Reusable (i.e., FAIR).

[1]  Alfred O. Hero,et al.  The Ontology of Biological and Clinical Statistics (OBCS) for standardized and reproducible statistical analysis , 2016, J. Biomed. Semant..

[2]  Rebecca Racz,et al.  Ontology-based collection, representation and analysis of drug-associated neuropathy adverse events , 2016, Journal of Biomedical Semantics.

[3]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[4]  Jessica A. Turner,et al.  The Ontology for Biomedical Investigations , 2016, PloS one.

[5]  Patricia L. Whetzel,et al.  OntoMaton: a Bioportal powered ontology widget for Google Spreadsheets , 2012, Bioinform..

[6]  Martin Romacker,et al.  Evolving BioAssay Ontology (BAO): modularization, integration and applications , 2014, Journal of Biomedical Semantics.

[7]  Yu Lin,et al.  Ontology representation and analysis of vaccine formulation and administration and their effects on vaccine immune responses , 2012, Journal of Biomedical Semantics.

[8]  Lawrence Hunter,et al.  KaBOB: ontology-based semantic integration of biomedical databases , 2015, BMC Bioinformatics.

[9]  Michel Dumontier,et al.  Towards quantitative measures in applied ontology , 2012, ArXiv.

[10]  Yu Lin,et al.  Ontorat web server for automatic generation and annotations of new ontology terms , 2012, ICBO.

[11]  Hong Cui,et al.  MicrO: an ontology of phenotypic and metabolic characters, assays, and culture media found in prokaryotic taxonomic descriptions , 2016, Journal of Biomedical Semantics.

[12]  Heiner Stuckenschmidt,et al.  Ontology Alignment Evaluation Initiative: Six Years of Experience , 2011, J. Data Semant..

[13]  Cui Tao,et al.  OAE: The Ontology of Adverse Events , 2014, J. Biomed. Semant..

[14]  E. Brown,et al.  The Medical Dictionary for Regulatory Activities (MedDRA) , 1999, Drug safety.

[15]  Chris Mungall,et al.  Ten Simple Rules for Biomedical Ontology Development , 2016, ICBO/BioCreative.

[16]  Natalya F. Noy,et al.  Protégé: A Tool for Managing and Using Terminology in Radiology Applications , 2007, Journal of Digital Imaging.

[17]  Michael Schroeder,et al.  GoPubMed: exploring PubMed with the Gene Ontology , 2005, Nucleic Acids Res..

[18]  Bin Zhao,et al.  Ontobee: A linked ontology data server to support ontology term dereferencing, linkage, query and integration , 2016, Nucleic Acids Res..

[19]  Robert Stevens,et al.  Populous: a tool for building OWL ontologies from templates , 2012, BMC Bioinformatics.

[20]  Yongqun He,et al.  Ontology-Based Vaccine and Drug Adverse Event Representation and Theory-Guided Systematic Causal Network Analysis Toward Integrative Pharmacovigilance Research , 2016, Current Pharmacology Reports.

[21]  Yongqun He,et al.  Ontodog: a web-based ontology community view generation tool , 2014, Bioinform..

[22]  J. Michael Cherry,et al.  Ontology application and use at the ENCODE DCC , 2015, Database J. Biol. Databases Curation.

[23]  Barry Smith,et al.  Ontobull and BFOConvert: Web-based Programs to Support Automatic Ontology Conversion , 2016, ICBO/BioCreative.

[24]  Alan Ruttenberg,et al.  Overcoming the ontology enrichment bottleneck with Quick Term Templates , 2011, Appl. Ontology.

[25]  M. Ashburner,et al.  The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration , 2007, Nature Biotechnology.

[26]  Lennart Martens,et al.  The Ontology Lookup Service: bigger and better , 2010, Nucleic Acids Res..

[27]  Dietrich Rebholz-Schuhmann,et al.  Ontology design patterns to disambiguate relations between genes and gene products in GENIA , 2011, J. Biomed. Semant..

[28]  Julia Stoyanovich,et al.  AnnotCompute: annotation-based exploration and meta-analysis of genomics experiments , 2011, Database J. Biol. Databases Curation.

[29]  Yongqun He,et al.  Community-based Ontology Development, Annotation and Discussion with MediaWiki extension Ontokiwi and Ontokiwi-based Ontobedia , 2016, AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science.

[30]  Olivier Bodenreider,et al.  From Concept Representations to Ontologies: A Paradigm Shift in Health Informatics? , 2013, Healthcare informatics research.

[31]  Paul N. Schofield,et al.  The role of ontologies in biological and biomedical research: a functional perspective , 2015, Briefings Bioinform..

[32]  Martin J. O'Connor,et al.  M2: A Language for Mapping Spreadsheets to OWL , 2010, OWLED.

[33]  Csongor Nyulas,et al.  BioPortal: enhanced functionality via new Web services from the National Center for Biomedical Ontology to access and use ontologies in software applications , 2011, Nucleic Acids Res..

[34]  Jie Liu,et al.  Simplifying MIREOT; a MIREOT Protege Plugin , 2012, SEMWEB.

[35]  Eero Hyvönen,et al.  Preventing ontology interoperability problems instead of solving them , 2010, Semantic Web.

[36]  Bjoern Peters,et al.  VO: Vaccine Ontology , 2009 .

[37]  Bjoern Peters,et al.  IMMUNOCAT—A Data Management System for Epitope Mapping Studies , 2010, Journal of biomedicine & biotechnology.

[38]  Cui Tao,et al.  Linked vaccine adverse event data from VAERS for biomedical data analysis and longitudinal studies , 2014, BioData Mining.

[39]  Bin Zhao,et al.  The Ontology of Vaccine Adverse Events (OVAE) and its usage in representing and analyzing adverse events associated with US-licensed human vaccines , 2013, Journal of Biomedical Semantics.

[40]  Robert Stevens,et al.  Ontology Design Patterns for bio-ontologies: a case study on the Cell Cycle Ontology , 2008, BMC Bioinformatics.

[41]  Csongor Nyulas,et al.  WebProtégé: a collaborative Web-based platform for editing biomedical ontologies , 2014, Bioinform..

[42]  Paul N. Schofield,et al.  Using AberOWL for fast and scalable reasoning over BioPortal ontologies , 2016, ICBO.

[43]  Christian J. Stoeckert,et al.  Development of an Application Ontology for Beta Cell Genomics Based On the Ontology for Biomedical Investigations , 2013, ICBO.

[44]  Deborah L. McGuinness,et al.  Linked provenance data: A semantic Web-based approach to interoperable workflow traces , 2011, Future Gener. Comput. Syst..

[45]  Gary D Bader,et al.  BioPAX – A community standard for pathway data sharing , 2010, Nature Biotechnology.

[46]  Yu Lin,et al.  Ontorat: automatic generation of new ontology terms, annotations, and axioms based on ontology design patterns , 2015, J. Biomed. Semant..

[47]  C. H. Camargo,et al.  Species distribution and susceptibility profile of Candida species in a Brazilian public tertiary hospital , 2010, BMC Research Notes.

[48]  Simon Jupp,et al.  Webulous and the Webulous Google Add-On - a web service and application for ontology building from templates , 2016, J. Biomed. Semant..

[49]  Brett E. Pickett,et al.  Standardized Metadata for Human Pathogen/Vector Genomic Sequences , 2014, PloS one.

[50]  Dragomir R. Radev,et al.  Mining of vaccine-associated IFN-γ gene interaction networks using the Vaccine Ontology , 2011, J. Biomed. Semant..

[51]  Cui Tao,et al.  Network-based analysis of vaccine-related associations reveals consistent knowledge with the vaccine ontology , 2013, Journal of Biomedical Semantics.

[52]  Yongqun He,et al.  Ontodog: A Web-based Ontology Community View Generator , 2012, ICBO.

[53]  Susanna-Assunta Sansone,et al.  linkedISA: semantic representation of ISA-Tab experimental metadata , 2014, BMC Bioinformatics.

[54]  Alessandro Sette,et al.  Query enhancement through the practical application of ontology: the IEDB and OBI , 2013, J. Biomed. Semant..

[55]  Alan Ruttenberg,et al.  MIREOT: The minimum information to reference an external ontology term , 2009, Appl. Ontology.

[56]  Jie Tang,et al.  Toward Detecting Mapping Strategies for Ontology Interoperability , 2005, WWW 2005.

[57]  Chris Mungall,et al.  ROBOT: A command-line tool for ontology development , 2015, ICBO.

[58]  Robert Stevens,et al.  Ten Simple Rules for Selecting a Bio-ontology , 2016, PLoS Comput. Biol..

[59]  Ryan R Brinkman,et al.  OntoFox: web-based support for ontology reuse , 2010, BMC Research Notes.

[60]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..

[61]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[62]  Yannis Kalfoglou,et al.  Ontology mapping: the state of the art , 2003, The Knowledge Engineering Review.

[63]  James A. Hendler,et al.  A new look at the semantic web , 2016, Commun. ACM.

[64]  Tanya Z. Berardini,et al.  TermGenie – a web-application for pattern-based ontology class generation , 2014, J. Biomed. Semant..