Fabrication, properties, and applications of porous metals with directional pores.

Lotus-type porous metals with aligned long cylindrical pores are fabricated by unidirectional solidification from the melt with a dissolved gas such as hydrogen, nitrogen, or oxygen. The gas atoms can be dissolved into the melt via a pressurized gas atmosphere or thermal decomposition of gaseous compounds. Three types of solidification techniques have been developed: mold casting, continuous zone melting, and continuous casting techniques. The last method is superior from the viewpoint of mass production of lotus metals. The observed anisotropic behaviors of the mechanical properties, sound absorption, and thermal conductivity are inherent to the anisotropic porous structure. In particular, the remarkable anisotropy in the mechanical strength is attributed to the stress concentration around the pores aligned perpendicular to the loading direction. Heat sinks are a promising application of lotus metals due to the high cooling performance with a large heat transfer.

[1]  H. Nakajima,et al.  Heat Transfer Capacity of Lotus-Type Porous Copper Heat Sink , 2003 .

[2]  H. Nakajima Fabrication, properties, and applications of porous metals with directional pores , 2010, Proceedings of the Japan Academy. Series B, Physical and Biological Sciences.

[3]  H. Nakajima,et al.  Effect of solidification velocity on pore morphology of lotus-type porous copper fabricated by unidirectional solidification , 2003 .

[4]  H. Nakajima Invariant Reaction of Liquid → Solid + Gas - Gas-Evolution Crystallization Reaction - , 2001 .

[5]  I. Egry,et al.  Surface tension measurement of molten silicon by the oscillating drop method using electromagnetic levitation , 1995 .

[6]  Herbert F. Wang,et al.  Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook , 1971 .

[7]  L. Gibson,et al.  The compressive behaviour of porous copper made by the GASAR process , 1997 .

[8]  J. Kováčik The tensile behaviour of porous metals made by GASAR process , 1998 .

[9]  K. Murakami,et al.  Pore Morphology and Microstructure of Porous Magnesium Alloys Fabricated by Unidirectional Solidification Under Hydrogen Atmosphere , 2003 .

[10]  J. Park,et al.  Fabrication of Lotus-Type Porous Aluminum through Thermal Decomposition Method , 2009 .

[11]  Harold H. Demarest,et al.  Cube‐Resonance Method to Determine the Elastic Constants of Solids , 1971 .

[12]  O. Vizika,et al.  Macroscopic Conductivity of Vugular Porous Media , 2002 .

[13]  H. Nakajima,et al.  Sound absorption characteristics of lotus-type porous copper fabricated by unidirectional solidification , 2004 .

[14]  A. A. Cosner,et al.  Effective Thermal Conductivities of Fibrous Composites , 1981 .

[15]  T. Unagami,et al.  Structure of Porous Silicon Layer and Heat‐Treatment Effect , 1978 .

[16]  J. Beech,et al.  The development of blowholes in the ice/water/carbon dioxide system , 1975 .

[17]  A. Evans,et al.  Porous and cellular materials for structural applications , 1998 .

[18]  K. Murakami,et al.  Anisotropic mechanical properties of porous copper fabricated by unidirectional solidification , 2001 .

[19]  K. Phani Young's modulus-porosity relation in gypsum systems , 1986 .

[20]  H. Bergmann,et al.  Mechanical properties of structures of semifinished products joined to aluminium foams , 2001 .

[21]  A. Makaya,et al.  Study on the production of Fe–Cr–Mn–C–Si foam by nitrogen solubility difference between the liquid and solid phases , 2005 .

[22]  E. Fromm,et al.  Gases and carbon in metals , 1980 .

[23]  K. Nagata,et al.  Discontinuity in normal spectral emissivity of solid and liquid copper at the melting point , 1997 .

[24]  H. Nakajima,et al.  Fabrication of Porous Copper with Directional Pores through Thermal Decomposition of Compounds , 2008 .

[25]  J. Simmons,et al.  Overview: high-nitrogen alloying of stainless steels , 1996 .

[26]  H. Nakajima,et al.  Measurement and analysis of effective thermal conductivities of lotus-type porous copper , 2004 .

[27]  H. Nakajima,et al.  Fabrication of lotus-type silver with directional pores by unidirectional solidification in oxygen atmosphere , 2005 .

[28]  K. Murakami,et al.  Fabrication of porous copper by unidirectional solidification under hydrogen and its properties , 2001 .

[29]  A. Boccaccini,et al.  Determination of stress concentration factors in porous materials , 1996 .

[30]  G. Mala,et al.  Pressure-driven water flows in trapezoidal silicon microchannels , 2000 .

[31]  A. Agogino Notch Effects, Stress State, and Ductility , 1978 .

[32]  I. Ohno,et al.  FREE VIBRATION OF A RECTANGULAR PARALLELEPIPED CRYSTAL AND ITS APPLICATION TO DETERMINATION OF ELASTIC CONSTANTS OF ORTHORHOMBIC CRYSTALS , 1976 .

[33]  Henry Eyring,et al.  Hydrogen in metals , 1948 .

[34]  Robert E. Reed-Hill,et al.  Physical Metallurgy Principles , 1972 .

[35]  H. Nakajima,et al.  Weld fusion property of lotus-type porous copper by laser beam irradiation , 2003 .

[36]  H. Inui,et al.  High-temperature structural intermetallics , 2000 .

[37]  H. Nakajima,et al.  Vibration–damping capacity of lotus-type porous magnesium , 2006 .

[38]  C. J. Smithells,et al.  Smithells metals reference book , 1949 .

[39]  H. Kleebe,et al.  Grain‐Boundary Viscosity of Preoxidized and Nitrogen‐Annealed Silicon Carbides , 2004 .

[40]  Hirotsugu Ogi,et al.  Contactless mode-selective resonance ultrasound spectroscopy: Electromagnetic acoustic resonance , 1999 .

[41]  Charles S. Smith,et al.  Ultrasonic equation of state of iron: I. Low pressure, room temperature , 1966 .

[42]  H. Nakajima,et al.  Characteristics of Sound Absorption in Lotus-Type Porous Magnesium , 2004 .

[43]  Shinsuke Suzuki,et al.  Effect of transference velocity and hydrogen pressure on porosity and pore morphology of lotus-type porous copper fabricated by a continuous casting technique , 2007 .

[44]  H. Nakajima,et al.  Elastic constants of lotus-type porous magnesium: Comparison with effective-mean-field theory , 2004 .

[45]  H. Nakajima,et al.  Internal friction in lotus-structured porous copper with hydrogen pores , 2003 .

[46]  C. Tien,et al.  Effects of thermal dispersion on forced convection in fibrous media , 1988 .

[47]  H. Nakajima,et al.  Tensile deformation of anisotropic porous copper with directional pores , 2010 .

[48]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .

[49]  D. R. Turner Electropolishing Silicon in Hydrofluoric Acid Solutions , 1958 .

[50]  H. Feichtinger,et al.  On the Solubility of Nitrogen in Liquid Iron and Steel Alloys Using Elevated Pressure / Über die Löslichkeit von Stickstoff in Eisen- und Stahllegierungen unter erhöhtem Druck , 1991 .

[51]  H. Nakajima,et al.  Evaluation of elastic and thermoelastic properties of lotus-type porous metals via effective-mean-field theory , 2006 .

[52]  H. Nakajima,et al.  Heat Transfer Capacity of Lotus-type Porous Copper Heat Sink for Air Cooling , 2010 .

[53]  H. Nakajima,et al.  Fabrication of lotus-type porous iron and its mechanical properties , 2004 .

[54]  T. Ichitsubo,et al.  Effective-mean-field approach for macroscopic elastic constantsof composites , 2004 .

[55]  A. G. Cullis,et al.  Visible light emission due to quantum size effects in highly porous crystalline silicon , 1991, Nature.

[56]  Y. Levinsky Pressure Dependent Phase Diagrams of Binary Alloys , 1997 .

[57]  H. Nakajima,et al.  Fabrication of Porous Iron by Unidirectional Solidification in Nitrogen Atmosphere , 2002 .

[58]  R. Peterson Stress Concentration Design Factors , 1953 .

[59]  Martin L. Dunn,et al.  Elastic constants of textured short-fiber composites , 1996 .

[60]  J. Banhart Manufacture, characterisation and application of cellular metals and metal foams , 2001 .

[61]  J. C. Fisher The Fracture of Liquids , 1948 .

[62]  B. Chalmers Principles of Solidification , 1964 .

[63]  Shripad P. Mahulikar,et al.  Experimental verification of the role of Brinkman number in microchannels using local parameters , 2000 .

[64]  H. Nakajima,et al.  Fabrication of lotus-type porous stainless steel by unidirectional solidification under hydrogen atmosphere , 2002 .

[65]  H. Nakajima,et al.  Anisotropic yield behavior of lotus-type porous iron: Measurements and micromechanical mean-field analysis , 2005 .

[66]  Michael F. Ashby,et al.  Cellular metals and metal foaming technology , 2001 .

[67]  H. Nakajima,et al.  Fabrication of Lotus-type Porous Ni3Al Intermetallics , 2004 .

[68]  B. Chalmers,et al.  How Water Freezes , 1959 .

[69]  A. Sangani,et al.  Transport Processes in Random Arrays of Cylinders. I. Thermal Conduction , 1988 .

[70]  L. Gibson,et al.  The tensile strength of porous copper made by the GASAR process , 1996 .

[71]  Ernst Behrens,et al.  Thermal Conductivities of Composite Materials , 1968 .

[72]  H. Nakajima,et al.  Anisotropic compressive properties of porous copper produced by unidirectional solidification , 2003 .

[73]  H. Nakajima,et al.  Fabrication of lotus-type porous silicon by unidirectional solidification in hydrogen , 2004 .

[74]  T. Lu,et al.  Sound absorption in metallic foams , 1999 .

[75]  Bending properties of porous copper fabricated by unidirectional solidification , 2004 .

[76]  PengSheng Wei,et al.  Shape of a pore trapped in solid during solidification , 2000 .

[77]  M. Koiwa,et al.  TWIST EFFECT OF V-H, Nb-H AND Ta-H ALLOYS ASSOCIATED WITH THE PRECIPITATION OF HYDRIDES , 1983 .

[78]  Ya. E. Geguzin,et al.  Crystallization of a gas-saturated melt , 1981 .

[79]  V. Raghavan Phase diagrams of ternary iron alloys , 1987 .

[80]  H. Nakajima,et al.  Fabrication of Lotus-Type Porous Brass by Zinc Diffusion into Porous Copper , 2003 .

[81]  K. Murakami,et al.  Evaluation of porosity in porous copper fabricated by unidirectional solidification under pressurized hydrogen , 2001 .

[82]  H. Nakajima,et al.  Fabrication of lotus-type porous stainless steel by continuous zone melting technique and mechanical property , 2005 .

[83]  K. Murakami,et al.  Formation of Pores during Unidirectional Solidification of Water Containing Carbon Dioxide. , 2002 .

[84]  K. Murakami,et al.  Direct observation of pore growth in unidirectionally solidified water-carbon dioxide solution , 2003 .

[85]  J. Kováčik,et al.  Aluminium foam—modulus of elasticity and electrical conductivity according to percolation theory , 1998 .

[86]  H. Nakajima,et al.  Anisotropic elastic constants of lotus-type porous copper: measurements and micromechanics modeling , 2002 .